Open Access
Mechanics & Industry
Volume 17, Number 4, 2016
Article Number 406
Number of page(s) 12
Published online 23 May 2016
  1. T. Shibata, T. Kumamoto, Y. Nagaoka, K. Kawase, K. Yano, Redox Flow Batteries for the Stable Supply of Renewable Energy, SEI Technical Rev. 76 (2013) 14–22 [Google Scholar]
  2. R.M. Dell, D.A.J. Rand, Energy storage a-key technology for global energy sustainability, J. Power Sources 100 (2001) 2–17 [CrossRef] [Google Scholar]
  3. L. Jeorissen, J. Garche, C.H. Fabjan, G. Tomazic, Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems, J. Power Sources 127 (2004) 98–104 [CrossRef] [Google Scholar]
  4. H. Ghadamian, A.A. Hamidi, H. Farzaneh, H.A. Ozgoli, Thermo-economic analysis of absorption air cooling system for pressurized solid oxide fuel cell/gas turbine cycle, J. Renew. Sust. Energy 4 (2012) 043115–1 to 043115–14 [CrossRef] [Google Scholar]
  5. Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Choi, D. Lu, L.P. Lemmon, J. Liu, Electrochemical energy storage for green grid, Chem. Rev. 111 (2011) 3577–3613 [CrossRef] [PubMed] [Google Scholar]
  6. C. Ponce de Leon, A. Frias-Ferrer, J. Gonzalez Garcia, D.A. Szanto, F. C. Walsh, Redox flow cells for energy conversion, J. Power Sources 160 (2006) 716–732 [CrossRef] [Google Scholar]
  7. G. Kear, A.A. Shah, F.C. Walsh, Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects, Int. J. Energy Res. 36 (2011) 1105–1120 [CrossRef] [Google Scholar]
  8. M. Skyllas-Kazacos, C. Menicats, The vanadium redox battery for emergency back-up applications, Proceedings of the 19th Intelec Meeting, IEEE Communication Society, Melbourne, Australia, 1997, pp. 463–471 [Google Scholar]
  9. The VRB Energy Storage System (VRB-ESS) the multiple benefits of integrating the VRB-ESS with wind energy – Case studies in MWH applications, Technical report, VRB Power Systems Inc., available in:, 2007 [Google Scholar]
  10. M.R. Mohamed, H. Ahmad, M.N. Abu Seman, Estimating the State-of-Charge of all-Vanadium Redox Flow Battery using a Divided, Open circuit Potentiometric Cell, Electronika IR Elektrotechnika 19 (2013) 37–42 [Google Scholar]
  11. D.S. Aaron, Q. Liu, Z. Tang, G.M. Grim, A.B. Papandrew, A. Turhan, T.A. Zawodzinski, M.M. Mench, Dramatic Performance Gains in Vanadium Redox Flow Batteries Through Modified Cell Architecture, J. Power Sources 206 (2012) 450–453 [CrossRef] [Google Scholar]
  12. Q. Xu, T.S. Zhao, P.K. Leung, Numerical investigations of flow field designs for vanadium redox flow batteries, Appl. Energy 105 (2013) 47–56 [CrossRef] [Google Scholar]
  13. M.R. Mohamed, S.M. Sharkh, H. Ahmad, M.N. Abu Seman, F.C. Walsh, Design and development of unit cell and system for vanadium redox flow batteries (V-RFB), Int. J. Phys. Sci. 7 (2012) 1010–1024 [Google Scholar]
  14. M. Skyllas-Kazacos, R.G. Robbins, The All Vanadium Redox Battery, U.S. Patent No. 849 094, 1986 [Google Scholar]
  15. V. Esfahanian, H. Mahmoodi, H. Babazadeh, M. Aghvami, R. Pasandeh, F. Torabi, G. Ahmadi, Numerical simulation of electrolyte particles trajectory to investigate battery cover design characteristics, J. Power Sources 191 (2009) 139–143 [CrossRef] [Google Scholar]
  16. A.A. Shah, M.J. Watt-Smith, F.C. Walsh, A dynamic performance model for redox-flow batteries involving soluble species, Electrochimica Acta 53 (2008) 8087–8100 [CrossRef] [Google Scholar]
  17. D. You, H. Zhang, J. Chen, A simple model for the vanadium redox battery, Electrochimica Acta 54 (2009) 6827–6836 [CrossRef] [Google Scholar]
  18. A. Tang, S. Ting, J. Bao, M. Skyllas-Kazacos, Thermal modelling and simulation of the all-vanadium redox flow battery, J. Power Sources 203 (2012) 165–176 [CrossRef] [Google Scholar]
  19. S. Corcuera, M. Skyllas-Kazacos, State-Of-Charge Monitoring and Electrolyte Rebalancing Methods for the Vanadium Redox Flow Battery, Eur. Chem. Bull. 1 (2012) 511–519 [Google Scholar]
  20. K.W. Knehr, E. Agar, C.R. Dennison, A.R. Kalidindi, E.C. Kumbur, A Transient Vanadium Flow Battery Model Incorporating Vanadium Crossover and Water Transport through the Membrane, J. Electrochem. Soc. 159 (2012) A1446–A1459 [CrossRef] [Google Scholar]
  21. D. You, H. Zhang, C. Sun, X. Ma, Simulation of the self-discharge process in vanadium redox flow battery, J. Power Sources 196 (2011) 1578–1585 [CrossRef] [Google Scholar]
  22. M. Li, T. Hikihara, A Coupled Dynamical Model of Redox Flow Battery Based on Chemical Reaction, Fluid Flow, and Electrical Circuit, Institute of Electronics, Information and Communication Engineers, IEICE Transactions on Fundamentals of Electronics, Commun. Comput. Sci. E91–A (2008) 1741–1727 [Google Scholar]
  23. P. Zhao, H. Zhang, H. Zhou, J. Chen, S. Gao, B. Yi, Characteristics and performance of 10kW class all-vanadium redox-flow battery stack, J. Power Sources 162 (2006) 1416–1420 [CrossRef] [Google Scholar]
  24. M.R. Mohamed, H. Ahmad, M.N. Abu Seman, S. Razali, M.S. Najib, Electrical circuit model of a vanadium redox flow battery using extended Kalman filter, J. Power Sources 239 (2013) 284–293 [CrossRef] [Google Scholar]
  25. B. Xiong, J. Zhao, K.J. Tseng, M. Skyllas-Kazacos, T.M. Lim, Y. Zhang, Thermal hydraulic behavior and efficiency analysis of an all-vanadium redox flow battery, J. Power Sources 242 (2013) 314–324 [CrossRef] [Google Scholar]
  26. X. Binyu, J. Zhao, W. Zhongbao, Z. Chenda, State of Charge Estimation of an All-Vanadium Redox Flow Battery Based on a Thermal-Dependent Model, Power and Energy Engineering Conference (APPEEC), IEEE PES Asia-Pacific, 8-11 Dec., Kowloon, (2013) 1–6 [Google Scholar]
  27. A. Tang, J. Bao, M. Skyllas-Kazacos, Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery, J. Power Sources 196 (2011) 10737–10747 [CrossRef] [Google Scholar]
  28. H.A. Ozgoli, S. Elyasi, M. Mollazadeh, Hydrodynamic and electrochemical modeling of vanadium redox flow battery, Mechanics & Industry, Accepted 22 August 2014, DOI: 10.1051/meca/2014071 [Google Scholar]
  29. H. Al-Fetlawi, A.A. Shah, Walsh, F.C. Non-isothermal modelling of the all-vanadium redox flow battery, Electrochim. Acta 55 (2009) 78–89 [CrossRef] [Google Scholar]
  30. H. Al-Fetlawi, A.A. Shah, F.C. Walsh, Modelling the effects of oxygen evolution in the all-vanadium redox flow battery, Electrochim. Acta 55 (2010) 3192–3205 [CrossRef] [Google Scholar]
  31. M. Vynnycky, Analysis of a model for the operation of a vanadium redox battery, Energy 36 (2011) 2242–2256 [CrossRef] [Google Scholar]
  32. D. Schmal, J. Van Erkel, P.J. Van Dnin, Mass transfer at carbon fibre electrodes, J. Appl. Electrochem. 16 (1986) 422–430 [CrossRef] [Google Scholar]
  33. M. Tomadakis, T.J. Robertson, Viscous permeability of random fiber structures: comparison of electrical and diffusional estimates with experimental and analytical results, J. Compos. Mater. 39 (2005) 163–187 [CrossRef] [Google Scholar]
  34. J. Gonzalez-Garcìa, P. Bonete, E. Exposito, V. Montiel, A. Aldaz, R. Torregrosa-Macia, Characterization of a carbon felt electrode: structural and physical properties, J. Mater. Chem. 9 (1999) 419–426 [CrossRef] [Google Scholar]
  35. E. Sum, M. Skyllas-Kazacos, A study of V(II)/V(III) redox couple for redox flow cell applications, J. Power Sources 15 (1985) 179-190 [CrossRef] [Google Scholar]
  36. T. Sukkar, M. Skyllas-Kazacos, Water transfer behaviour across cation exchange membranes in the vanadium redox battery, J. Membrane Science 222 (2003) 235–247 [CrossRef] [Google Scholar]
  37. Y. Wen, H. Zhang, P. Qian, P. Zhao, H. Zhou, B. Yi, Investigations on the Electrode Process of Concentrated V(IV)/V(V) Species in a Vanadium Redox Flow Battery, Acta Physico-Chimica Sinica 22 (2006) 403–408 [CrossRef] [Google Scholar]
  38. A. Heintz, C. Illenberger, Thermodynamics of vanadium redox flow batteries – electrochemical and calorimetric investigations, Berichte der Bunsengesellschaft für physikalische Chemie 102 (1998) 1401–1409 [CrossRef] [Google Scholar]
  39. A. Tang, J. Bao, M. Skyllas-Kazacos, Thermal modelling of battery configuration and self -discharge reactions in vanadium redox flow battery, J. Power Sources 216 (1992) 489–501, 2012 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.