Open Access
Issue
Mechanics & Industry
Volume 17, Number 4, 2016
Article Number 409
Number of page(s) 11
DOI https://doi.org/10.1051/meca/2015097
Published online 23 May 2016
  1. A.H. Nayfeh, Nonlinear oscillations, Wiley, New York, 1995 [Google Scholar]
  2. S.H. Strogatz, Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering, Addison-wesley, Reading, MA, 1994 [Google Scholar]
  3. F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, 2nd edition, Springer, Berlin, 1999 [Google Scholar]
  4. R. Rand, Lecture Notes on Nonlinear Vibrations, Cornell, New York, USA, 2003 [Google Scholar]
  5. R.M. Rosenberg, On nonlinear vibrations of systems with many degrees of freedom, Adv. Appl. Mech. 9 (1966) 155–242 [CrossRef] [Google Scholar]
  6. R.H. Rand, C.H. Pak, A.F. Vakakis, Bifurcation of nonlinear normal modes in a class of two degree of freedom systems, Acta Mechanica 3 (1992) 129–145 [Google Scholar]
  7. A.F. Vakakis, T. Nayfeh, M.E. King, A multiple scales analysis of nonlinear, localized modes in a cyclic periodic system, J. Appl. Mech. 60 (1993) 388–397 [CrossRef] [MathSciNet] [Google Scholar]
  8. M.E. King, A.F. Vakakis, Mode localization in a system of coupled flexible beams with geometric nonlinearities, Zeit. Angew. Math. Mech. (ZAMM) 75 (1995) 127–139 [CrossRef] [Google Scholar]
  9. A.F. Vakakis, L.I. Manevitch, Y.V. Mikhlin, V.N. Pilichuk, A.A. Zevin, Normal Modes and Localization in Nonlinear Systems, Wiley, New York, 1996 [Google Scholar]
  10. R. Rand, A direct method for nonlinear normal modes, Int. J. Non-Linear Mech. 9 (1974) 363–368 [CrossRef] [Google Scholar]
  11. S.W. Shaw, C. Pierre, Normal modes for non-linear vibratory systems, J. Sound Vib. 164 (1993) 85–124 [CrossRef] [Google Scholar]
  12. A.F. Vakakis, Non-linear normal modes and their applications in vibration theory: an overview, Mech. Syst. Signal Process. 11 (1997) 3–22 [CrossRef] [Google Scholar]
  13. A.H. Nayfeh, Introduction to Perturbation Techniques, Wiley-Interscience, New York, 1981 [Google Scholar]
  14. R.E. O’Malley, Singular Perturbation Methods for Ordinary Differential Equations, Springer, New York, 1991 [Google Scholar]
  15. J. Kevorkian, J.D. Cole, Multiple Scales and Singular Perturbation Methods, Springer, New York, 1996 [Google Scholar]
  16. H.S.Y. Chan, K.W. Chung, Z. Xu, A perturbation-incremental method for strongly non-linear oscillators, Int. J. Non-Linear Mech. 31 (1996) 59–72 [CrossRef] [Google Scholar]
  17. S.H. Chen, Y.K. Cheung, A modified Lindstedt-Poincare’ method for a strongly nonlinear two degree-of-freedom system, J. Sound Vib. 193 (1996) 751–762 [CrossRef] [Google Scholar]
  18. V.N. Pilipchuk, The calculation of strongly nonlinear systems close to vibration-impact systems, PMM 49 (1985) 572–578 [Google Scholar]
  19. L.I. Manevitch, Complex Representation of Dynamics of Coupled Oscillators in Mathematical Models of Nonlinear Excitations, Transfer Dynamics and Control in Condensed Systems, Kluwer Academic/Plenum Publishers, New York, 1999 [Google Scholar]
  20. M.I. Qaisi, A.W. Kilani, A power-series solution for a strongly non-linear two-degree-of-freedom system, J. Sound Vib. 233 (2000) 489–494 [CrossRef] [Google Scholar]
  21. V.I. Babitsky, V.L. Krupenin, Vibrations of Strongly Nonlinear Discontinuous Systems, Springer, Berlin, 2001 [Google Scholar]
  22. M.A. Rotea, F.J. D’Amato, Efficient algorithms for mistuning analysis, in: Proceedings of the 15th triennial world congress, Barcelona, Spain, 2003 [Google Scholar]
  23. M. Rahimi, S. Ziaei-Rad, Uncertainty treatment in forced response calculation of mistuned bladed disk, Math. Comput. Simul. 80 (2010) 1746–1757 [CrossRef] [Google Scholar]
  24. B.J. Olson, S.W. Shaw, Vibration absorbers for a rotating flexible structure with cyclic symmetry: nonlinear path design, Nonlinear Dynamics (2009) DOI: 10.1007/s11071-009-9587-8 [Google Scholar]
  25. H.H. Yoo, J.Y. Kim, D.J. Inman, Vibration localization of simplified mistuned cyclic structures undertaking external harmonic force, J. Sound Vib. 261 (2003) 859–870 [CrossRef] [Google Scholar]
  26. M.E. King, Philip A. Layne, Dynamics of Nonlinear Cyclic Systems with Structural Irregularity, Nonlinear Dynamics 15 (1998) 225–244 [CrossRef] [MathSciNet] [Google Scholar]
  27. O. Gendelman, D. Gorlov, L. Manevitch, A. Musienko, Dynamics of coupled linear and essentially nonlinear oscillators with substantially different masses, J. Sound Vib. 286 (2005) 1–19 [CrossRef] [Google Scholar]
  28. Y.V. Mikhlin, S. Reshetnikova, Dynamical interaction of an elastic system and essentially nonlinear absorber, J. Sound Vib. 283 (2005) 91–120 [CrossRef] [Google Scholar]
  29. A.F. Vakakis, R.H. Rand, Non-linear dynamics of a system of coupled oscillators with essential stiffness non-linearities, Int. J. Non-Linear Mech. 39 (2004) 1079–1091 [CrossRef] [Google Scholar]
  30. A.F. Vakakis, L.I. Manevitch, O. Gendelman, L. Bergman, Dynamics of linear discrete systems connected to local, essentially non-linear attachments, J. Sound Vib. 264 (2003) 559–577 [CrossRef] [Google Scholar]
  31. D.M. McFarland, L.A. Bergman, A.F. Vakakis, Experimental study of non-linear energy pumping occurring at a single fast frequency, Int. J. Non-Linear Mech. 40 (2005) 891–899 [CrossRef] [Google Scholar]
  32. S. Pernot, E. Gourdon, C. Lamarque, M. Gloeckner, T. Griessmann, Experimental dynamics of a four-storey building coupled with a nonlinear energy sink, in: ENOC, Eindhoven, Netherlands, 2005 [Google Scholar]
  33. R.M. Rosenberg, The normal modes of nonlinear n-degrees-of-freedom systems, J. Appl. Mech. 30 (1962) 595–611 [Google Scholar]
  34. O.V. Gendelman, Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment, Nonlinear Dynamics 37 (2004) 115–128 [CrossRef] [MathSciNet] [Google Scholar]
  35. F.X. Wang, A.K. Bajaj, Nonlinear normal modes in multi-mode models of an inertially coupled elastic structure, Nonlinear Dynamics 47 (2007) 25–47 [CrossRef] [MathSciNet] [Google Scholar]
  36. W. Lacarbonara, G. Rega, A.H. Nayfeh, Resonant non-linear normal modes, Part I: analytical treatment for structural one-dimensional systems, Int. J. Non-Linear Mech. 38 (2003) 851–872 [CrossRef] [Google Scholar]
  37. W. Lacarbonara, G. Rega, Resonant non-linear normal modes, Part II: activation/orthogonality conditions for shallow structural systems, Int. J. Non-Linear Mech. 38 (2003) 873–887 [CrossRef] [Google Scholar]
  38. C.E.N. Mazzilli, O.G.P. Baracho Neto, Evaluation of non-linear normal modes for finite-element models, Comput. Struct. 80 (2002) 957–965 [CrossRef] [Google Scholar]
  39. X. Li, J.C. Ji, C.H. Hansen, Non-linear normal modes and their bifurcation of a two DOF system with quadratic and cubic non-linearity, Int. J. Non-linear Mech. 41 (2006) 1028–1038 [CrossRef] [Google Scholar]
  40. A. Grolet, F. Thouverez, Vibration analysis of a nonlinear system with cyclic symmetry, J. Eng. Gas Turbines Power 133 (2011) 022502 [CrossRef] [Google Scholar]
  41. F. Georgiades, M. Peeters, G. Kerschen, J. Golinval, Modal analysis of a nonlinear periodic structure with cyclic symmetry, AIAA J. 47 (2009) 1014–1025 [CrossRef] [Google Scholar]
  42. S. Samaranayake, G. Samaranayake, A.K. Bajaj, Resonant vibrations in harmonically excited weakly coupled mechanical systems with cyclic symmetry, Chaos, Solitons and Fractals 11 (2000) 1519–1534 [CrossRef] [MathSciNet] [Google Scholar]
  43. W. Sextro, K. Popp, T. Krzyzynski, Localization in Nonlinear Mistuned Systems with Cyclic Symmetry, Nonlinear Dynamics 25 (2001) 207–220 [CrossRef] [Google Scholar]
  44. J. Judge, C. Pierre, O. Mehmed, Experimental Investigation of Mode Localization and Forced Response Amplitude Magnification for a Mistuned Bladed Disk, J. Eng. Gas Turbines Power 123 (2001) 940–950 [CrossRef] [Google Scholar]
  45. E.P. Petrov, D.J. Ewins, Analytical Formulation of Friction Interface Elements for Analysis of Nonlinear MultiHarmonics Vibrations of Bladed Disks, ASME J. Turbomachinery 125 (2003) 364371 [Google Scholar]
  46. E.P. Petrov, D.J. Ewins, Method for Analysis of Nonlinear Multiharmonic Vibrations of Mistuned Bladed Disks With Scatter of Contact Interface Characteristics. ASME J. Turbomachinery 127 (2006) 128136 [Google Scholar]
  47. E. Ciğeroğlu, H.N. Özgüven, Nonlinear vibration analysis of bladed disks with dry friction dampers, J. Sound Vib. 292 (2006) 10281043 [Google Scholar]
  48. Y.J. Yan, P.L. Cui, H.N. Hao, Vibration mechanism of a mistuned bladed-disk, J. Sound Vib. 317 (2008) 294–307 [CrossRef] [Google Scholar]
  49. B.K. Beachkofski, Probabilistic rotor life assessment using reduced order models, J. Shock Vib. 16 (2009) 581–591 [CrossRef] [Google Scholar]
  50. D. Laxalde, F. Thouverez, J.J. Sinou, J.P. Lombard, Qualitative analysis of forced response of blisks with friction ring dampers, Eur. J. Mech. A/Solids 26 (2007) 676–687 [CrossRef] [Google Scholar]
  51. S.H. Shin, M.K. Kang, H.H. Yoo, Mistuned coupling stiffness effect on the vibration localization of cyclic systems, J. Mech. Sci. Technol. 22 (2008) 269–275 [CrossRef] [Google Scholar]
  52. B. Salhi, J. Lardies, M. Berthillier, Identification of modal parameters and aeroelastic coefficients in bladed disk assemblies, Mech. Syst. Signal Process. 23 (2009) 1894–1908 [CrossRef] [Google Scholar]
  53. B. Zhou, F. Thouverez, D. Lenoir, An adaptive control strategy based on passive piezoelectric shunt techniques applied to mistuned bladed disks, J. Comput. Appl. Math. 246 (2013) 289–300 [CrossRef] [MathSciNet] [Google Scholar]
  54. B. Zhou, F. Thouverez, D. Lenoir, Essentially nonlinear piezoelectric shunt circuits applied to mistuned bladed disks, J. Sound Vib. 333 (2014) 2520–2542 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.