Open Access
Mechanics & Industry
Volume 17, Number 5, 2016
Article Number 514
Number of page(s) 10
Published online 07 July 2016
  1. S.T. Tzeng, E. Saibel, Surface roughness effect on slider bearing lubrication, ASLE Trans. 10 (1967) 334–348 [CrossRef] [Google Scholar]
  2. H. Christensen, Stochastic models for hydrodynamic lubrication of rough surfaces, Proc. Inst. Mech Eng. 184 (1969) 1013–1026 [Google Scholar]
  3. N. Patir, H.S. Cheng, Application of average flow model to lubrication between rough sliding surfaces, J. Lubr. Technol. 101 (1979) 220–230 [Google Scholar]
  4. N Patir and H.S. Cheng. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. J. Lubr. Technol. 100 (1978) 12–17 [Google Scholar]
  5. H.G. Elrod, A general theory for laminar lubrication with Reynolds roughness, J. Lubr. Technol. 101 (1979) 8–14 [CrossRef] [Google Scholar]
  6. J.H. Tripp, Surface roughness effects in hydrodynamic lubrication: The flow factor method, J. Lubr. Technol. 105 (1983) 458–465 [CrossRef] [Google Scholar]
  7. S.R. Harp, R.F. Salant, An average flow model of rough surface lubrication with inter-asperity cavitation,J. Tribol. 123 (2001) 134–143 [CrossRef] [Google Scholar]
  8. G. Bayada, J.B. Faure, A double scale analysis approach of the Reynolds roughness - comments and application to the journal bearing, J. Tribol. 111 (1989) 323–330 [CrossRef] [Google Scholar]
  9. G. Bayada, S. Martin, C. Vasquez, An average flow model of the Reynolds roughness including a mass-flow preserving cavitation model, J. Tribol. 127 (2005) 797–802 [CrossRef] [Google Scholar]
  10. F. Sahlin, R. Larrson, A. Almqvist, P.M. Lugt, P. Marklund, A mixed lubrication model incorporating measured surface topography, part 2: Roughness treatment, model validation, and simulation, IMechE, Part J, J. Eng. Tribol. 224 (2010) 353–365 [Google Scholar]
  11. F. Sahlin, R. Larrson, A. Almqvist, P.M. Lugt, P. Marklund, A mixed lubrication model incorporating measured surface topography. part 1: Theory of flow factors, IMechE, Part J, J. Eng. Tribol. 224 (2010) 335–351 [Google Scholar]
  12. Y.Z. Hu, D. Zhu, A full numerical solution to the mixed lubrication in point contacts, J. Tribol. 122 (2000) 1–9 [Google Scholar]
  13. C. Minet, N. Brunetière, B. Tournerie, A deterministic mixed lubrication model for mechanical seals, J. Tribol. 133 (2011) 042203 [Google Scholar]
  14. R. Boncompain, M. Fillon, J. Frêne, Analysis of thermal effects in hydrodynamic bearings. J. Tribol. 108 (1986) 219–224 [CrossRef] [Google Scholar]
  15. D.C. Wilcox, Turbulence Modeling for CFD, 2nd edition, DCW Industries, Inc., La Canada, California, USA, 1994 [Google Scholar]
  16. D. Dowson, A generalized Reynolds equation for fluid-film lubrication. Int. J. Mech. Sci. 4 (1962) 159–170 [CrossRef] [Google Scholar]
  17. N. Brunetière, B. Tournerie, Finite element solution of inertia influenced flow in thin fluid films, J. Tribol. 129 (2007) 76–886 [Google Scholar]
  18. B. Bhushan, Modern tribology handbook, chapter 2 – Surface Roughness Analysis and Measurement Techniques, CRC Press, Boca Raton, FL, 2001, pp. 1–71 [Google Scholar]
  19. Y.Z. Hu, K. Tonder, Simulation of 3-D random rough surface by 2-D digital filter and Fourier analysis, Int. J. Mach. Tools Manuf. 32 (1992) 83–90 [CrossRef] [Google Scholar]
  20. G. Bayada, I. Ciuperca, M. Jai, Homogenized elliptic equations and variational inequalities with oscillating parameters, application to the study of thin flow behavior with rough surfaces, Nonl. Anal.: Real World Appl. 7 (2006) 950–966 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.