Open Access
Issue
Mechanics & Industry
Volume 17, Number 6, 2016
Article Number 601
Number of page(s) 19
DOI https://doi.org/10.1051/meca/2015118
Published online 07 July 2016
  1. M. Dorfman, U. Erning, J. Mallon, Gas turbines use abradable coatings for clearance-control seals, Seal. Technol. 97 (2002) 7–8 [CrossRef] [Google Scholar]
  2. W. Dalzell, S. Sanders, G. Crawford, F. Walden, W. Woodard, Abradable seal having improved properties, US Patent No. 6 352 264, 2002 [Google Scholar]
  3. G. Jacquet-Richardet, M. Torkhani, P. Cartraud, F. Thouverez, T. N. Baranger, M. Herran, C. Gibert, S. Baguet, P. Almeida, L. Peletan, Rotor to stator contacts in turbomachines. review and application, Mech. Syst. Signal Process. 40 (2013) 401–420 [CrossRef] [Google Scholar]
  4. R. Schmid, F. Ghasripoor, M. Dorfman, X. Wie, An overview of compressor abradable thermal sprays, in: Surface Engineering International Thermal Spray Conference ITSC, 2000, pp. 406–412 [Google Scholar]
  5. P. Dowson, M. Walker, A. Watson, Development of abradable and rub-tolerant seal materials for application in centrifugal compressors and steam turbines, Seal. Technol. 12 (2004) 5–10 [CrossRef] [Google Scholar]
  6. Y. Maozhong, H. Baiyun, H. Jiawen, Erosion wear behaviour and model of abradable seal coating, Wear 252 (2002) 9–15 [CrossRef] [Google Scholar]
  7. M. Cuny, Contribution to the local characterization of pairs of materials involved during rotor/stator contact in a turbomachine, Ph.D. thesis, Université de Lorraine, 2012 [Google Scholar]
  8. S. Baïz, Experimental study of blade/abradable contact: contribution to the mechanical characterization of abradable materials and their dynamic interaction on rotating test bench with a rotating test rig with a blade, Ph.D. thesis, Ecole centrale de Lille, 2011 [Google Scholar]
  9. M. Proctor, J. Delgado, Leakage and power loss test results for competing turbine engine seals, in: ASME Turbo Expo 2004: Power for Land, Sea, and Air, 2004, pp. 441–451 [Google Scholar]
  10. I. Delgado, M. Proctor, Continued investigation of leakage and power loss test results for competing turbine engine seals, Tech. rep., NASA/TM-2006-214420 (2006) [Google Scholar]
  11. D. Collins, J. Teixeira, P. Crudgington, The degradation of abradable honeycomb labyrinth seal performance due to wear, Seal. Technol. 8 (2008) 7–10 [CrossRef] [Google Scholar]
  12. D. Rhode, R. Hibbs, Clearance effects on corresponding annular and labyrinth seal flow leakage characteristics, J. Tribol. 115 (1993) 699–704 [CrossRef] [Google Scholar]
  13. A. Gamal, J. Vance, Labyrinth seal leakage test: tooth profile, tooth thickness, and eccentricity effects, ASME J. Eng. Gas Turbines Power 130 (2008) 11 [CrossRef] [Google Scholar]
  14. L. Dobek, Labyrinth seal testing for lift fan engines, Tech. rep., Pratt and Whitney Aircraft Division United Aircraft Corporation, 1973 [Google Scholar]
  15. J. Denecke, V. Schramm, S. Kim, S. Wittig, Influence of rub-grooves on labyrinth seal leakage, in: ASME Turbo Expo 2002: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2002, pp. 771–779 [Google Scholar]
  16. P. Dowson, S. Ross, C. Schuster, The investigation of suitability of abradable seal materials for application in centrifugal compressors and steam turbines, in: Proceedings of the twentieth turbomachinery symposium, 1991 [Google Scholar]
  17. J. Whalen, E. Alvarez, L. Palliser, Thermoplastic labyrinth seals for centrifugal compressors, in: Proceeding of the thirty third Turbo Symposium, 2004 [Google Scholar]
  18. Z. Mutasim, L. Hsu, E. Wong, Evaluation of plasma sprayed abradable coatings, Surf. Coat. Technol. 54 (1992) 39–44 [CrossRef] [Google Scholar]
  19. S. Wilson, Ensuring tight seals, Tech. rep., Sulzer Technical Review 2, 2007 [Google Scholar]
  20. C. Delebarre, V. Wagner, J. Paris, G. Dessein, J. Denape, J. Gurt-Santanach, An experimental study of the high speed interaction between a labyrinth seal and an abradable coating in a turbo-engine application, Wear 316 (2014) 109–118 [CrossRef] [Google Scholar]
  21. A. Hase, H. Mishina, M. Wada, Correlation between features of acoustic emission signals and mechanical wear mechanisms, Wear 292-293 (2012) 144–150 [CrossRef] [Google Scholar]
  22. L. Marinescu, D. Axinte, A time frequency acoustic emission-based monitoring technique to identify workpiece surface malfunctions in milling with multiple teeth cutting simultaneously, Int. J. Machine Tools Manuf. 49 (2009) 53–65 [CrossRef] [Google Scholar]
  23. M. Noone, R. Mehan, Observation of crack propagation in polycrystalline ceramics and its relationship to acoustic emissions, in: Concepts, Flaws, and Fractography, Springer, US, 1974, Vol. 1, pp. 201–229 [Google Scholar]
  24. A. Prillieux, L. Talotte, Determining the evolution of the mechanical properties of alsi and abradable almn aluminum base., Tech. rep., Institut Carnot Cirimat, 2013 [Google Scholar]
  25. G. Chen, Z. Zhou, Time-frequency analysis of friction-induced vibration under reciprocating sliding conditions, Wear 262 (2007) 1–10 [CrossRef] [Google Scholar]
  26. Y. Berthier, P. Kapsa, L. Vincent, Material and contacts: A tribological approach, 1998 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.