Open Access
Issue |
Mechanics & Industry
Volume 17, Number 6, 2016
|
|
---|---|---|
Article Number | 608 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/meca/2015116 | |
Published online | 25 July 2016 |
- S. Timoshenko, D.H. Young, Engineering Mechanics, McGraw-Hill Book Co., 1956 [Google Scholar]
- S. Timoshenko, D.H. Young, Theory of Structures, McGraw-Hill Book Co., 1965 [Google Scholar]
- S. Timoshenko, B. Goodier, Theory of Elasticity, McGraw-Hill Book Co., 1970 [Google Scholar]
- R.C. Hibbeller, Mechanics of Materials, 9th edition, Prentice-Hall, Inc., Englewood Cliffs, N.J., USA, 2013 [Google Scholar]
- F.P. Beer, Mechanics of materials, 7th edition, McGraw-Hill Education Book Co., 2015 [Google Scholar]
- S. Timoshenko, History of strength of materials, McGraw-Hill Book Co., 1983 [Google Scholar]
- S. Ramamrutham, R. Narayanan, Strength of Materials, 14th edition, Dhanpat Rai Publication, 2011 [Google Scholar]
- D. Petru, Shear Stresses in Beams with Variable cross section, subjected to non-uniform bending, Annals of the University Dunarea de Jos of Galati: Fascicle XIV, Mech. Eng. 17 (2012) 39–44 [Google Scholar]
- S. Nair, E. Reissner, On the Determination of Stresses and Deflections for isotropic Homogeneous Cantilever Beams, J. Appl. Mech. 43 (1976) 75–80 [CrossRef] [Google Scholar]
- T.H.G. Megson, Aircraft Structures for Engineering Students, 4th edition, Butterworth-Heinemann, 2007 [Google Scholar]
- R. Barretta, A. Barretta, Shear Stresses in Elastic Beams: An intrinsic approach, Eur. J. Mech. A 29 (2009) 365–372 [Google Scholar]
- E. Velazquez, J.B. Kosmatka, Stresses in Half-Elliptic Curved Beams Subjected to Transverse Tip Forces, J. Appl. Mech. 80 (2012) 85–91 [CrossRef] [Google Scholar]
- P. Ladevèze, Sur le principe de Saint–Venant en élasticité, J. Mécanique Théorique et Appliquée 1 (1983) 161–184 [Google Scholar]
- J.M. Segura, G. Armengaud, Analytical formulation of stresses in curved composite beams, Arch. Appl. Mech. 68 (1998) 206–213 [CrossRef] [Google Scholar]
- J. Brnic, G. Turkalj, M. Canadija, Shear stress analysis in engineering beams using deplantation field of special 2D finite elements, Meccanica 45 (2010) 227–235 [CrossRef] [Google Scholar]
- W.E. Mason, L.R. Herrmann, Elastic shear analysis of general prismatic beams, J. Eng. Mech., Proceedings of the Americain Society Civil Engineering, 1968, pp. 965–983 [Google Scholar]
- E.J. Sapountzakis, D.G. Panagos, Nonlinear analysis of beams of variable cross section, including shear deformation effect, Arch. Appl. Mech. 78 (2008) 687–710 [CrossRef] [Google Scholar]
- Yu M. Tarnopol’skii, A.V. Roze, R.P. Shlitsa, Flexure of beams with low shear strength on an elastic foundation, Polymer Mechanics 3 (1967) 582–585 [CrossRef] [Google Scholar]
- S.I. Suzuki, Stress Analysis of Short beams, AIAA J. 24 (1985) 1396–1399 [CrossRef] [Google Scholar]
- J.D. Jr. Anderson, Fundamentals of aerodynamics, Mc Graw-Hill Book Co., 1984 [Google Scholar]
- H. Ashley, M. Landahl, Aerodynamics of Wing and Bodies, 2nd edition, Dover Publication, 1985 [Google Scholar]
- A. Steinboeck, A. Kugi, H.A. Mang, Energy-consistent shear coefficients for beams with circular cross sections and radially inhomogeneous materials, Int. J. Solids Struct. 50 (2013) 1859–1868 [CrossRef] [Google Scholar]
- G.R. Cowper, The shear coefficient in bending beam theory, J. Appl. Mech. 33 (1966) 335–340 [CrossRef] [Google Scholar]
- T. Zebbiche, M. Boun-jad, A. Allali, Geometric Characteristics of simply connected planar sections with application to airfoils, J. Aerospace Sci. Technol. 66 (2014) 325–333 [Google Scholar]
- A. Ralston, P. Rabinowitz, A First Course in Numerical Analysis, McGraw-Hill Book Co., 1985 [Google Scholar]
- B. Demidovitch, I. Marron, Eléments de Calcul Numérique, Edition Mir, Moscou, 1987 [Google Scholar]
- I.H. Abbott, von A.E. Doenhoff, Theory of wing sections: Including a summary of Airfoil data, Dover Publications, Inc., New York, 1959, Vol. II [Google Scholar]
- UIUC Applied Aerodynamics Group, department of Aerospace Engineering, College of Engineering, University of Illinois at Urbana, Champaign, Il, 2013, available at: http://www.ae.illinois.edu/m-selig/ads/coord˙database.html [Google Scholar]
- C.A.J. Fletcher, Computationnal Techniques for Fluid Dynamics, Specific Techniques for Different Flow Categories, Springer-Verlag, Austria, 1988, Vol. II [Google Scholar]
- T. Zebbiche, M. Boun-jad, A. Allali, Geometric characteristics of thin wall sections with application to airfoils, Arab. J. Sci. Eng. 39 (2014) 5917–5927 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.