Open Access
Mechanics & Industry
Volume 17, Number 6, 2016
Article Number 612
Number of page(s) 10
Published online 09 September 2016
  1. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, ASME Fluids Eng. Division 231 (1995) 99–105 [Google Scholar]
  2. X. Wang, X. Xu, S.U.S. Choi, Thermal Conductivity of Nanoparticle-Fluid Mixture, J. Thermophys. Heat Transfer 13 (1999) 474–480 [Google Scholar]
  3. R.Y. Jou, S.C. Tzeng, Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures, Int. Commun. Heat Mass Transfer 33 (2006) 727–736 [CrossRef] [Google Scholar]
  4. A.K. Santra, S. Sen, N. Chakraborty, Study of heat transfer augmentation in a differentially heated square cavity using copper-water nanofluid, Int. J. Thermal Sci. 47 (2008) 1113–1122 [Google Scholar]
  5. B. Ghasemi, S.M. Aminossadati, Natural convection heat transfer in an inclined enclosure filled with a water-CuO nanofluid, Numer. Heat Transfer A 55 (2009) 807–823 [CrossRef] [Google Scholar]
  6. E.B. Ogut, Heat transfer of water-based nanofluids with natural convection in a inclined square enclosure, J. Thermal Sci. Technol. 30 (2010) 23–33 [Google Scholar]
  7. K. Kahveci, Buoyancy driven heat transfer of nanofluids in a tilted enclosure, J. Heat Transfer 132 (2010) 01–12 [CrossRef] [Google Scholar]
  8. S.M. Aminossadati, B. Ghasemi, Enhanced natural convection in an isosceles triangular enclosure filled With a nanofluid, Comput. Math. Appl. 61 (2011) 1739–1753 [CrossRef] [MathSciNet] [Google Scholar]
  9. G.A. Holtzman, R.W. Hill, K.S. Ball, Laminar natural convection in isosceles triangular enclosures heated from below and symmetrically cooled from above, J. Heat Transfer 122 (2000) 485–491 [CrossRef] [Google Scholar]
  10. E.F. Kent, Numerical analysis of laminar natural convection in isosceles triangular enclosures, Proc. Instit. Mech. Eng. Part C, J. Mech. Eng. Sci. 223-5 (2009) 57–69 [Google Scholar]
  11. E.F. Kent, Numerical analysis of laminar natural convection in isosceles triangular enclosures for cold base and hot inclined walls, Mech. Res. Commun. 36 (2009) 497–508 [CrossRef] [Google Scholar]
  12. B.O. Elif, Natural convection of water-based nanofluids in an inclined enclosure with a heat source, Int. J. Thermal Sci. 48 (2009) 2063–2073 [Google Scholar]
  13. H.F. Oztop, E. Abu-Nada, Y. Varol, K. Al-Salem, Computational analysis of non-isothermal temperature distribution on natural convection in nanofluid filled enclosures, Superlattices Microstruct. 49 (2011) 453–467 [CrossRef] [Google Scholar]
  14. A. Arani, S. Mazrouei, M. Mahmoodi, A. Ardeshiri, M. Aliakbari, Numerical study of mixed convection flow in a lid-driven cavity with sinusoidal heating on side walls using nanofluid, Superlattices Microstruct. 51 (2012) 893–911 [CrossRef] [Google Scholar]
  15. B. Ghasemi, S.M. Aminossadati, Brownian motion of nanoparticles in a triangular enclosure with natural convection, Int. J. Thermal Sci. 49 (2010) 931–940 [CrossRef] [Google Scholar]
  16. S.P. Jang, S.U.S. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluid, Appl. Phys. Lett. 84 (2004) 4316–4318 [CrossRef] [Google Scholar]
  17. D. Wen, Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, Int. J. Heat Mass Transfer 47 (2004) 5181–5188 [CrossRef] [Google Scholar]
  18. W.S. Heris, N.M. Esfahany, Gh.S. Etemad, Experimental investigation of convective heat transfer of Al2O3/water Nanofluid in circular tube, Int. J. Heat Fluid Flow 28 (2007) 203–210 [CrossRef] [Google Scholar]
  19. S.M. Aminossadati, Hydromagnetic natural cooling of a triangular heat source in a triangular cavity with water-CuO nanofluid, Int. Commun. Heat Mass Transfer 43 (2013) 22–29 [CrossRef] [Google Scholar]
  20. A. Mezrhab, H. Bouali, H. Amaoui, M. Bouzidi, Computation of combined natural-convection and radiation heat-transfer in a cavity having a square body at its center, Appl. Energy 83 (2006) 1004–1023 [CrossRef] [Google Scholar]
  21. M. Mahmoodi, S.M. Sebdani, Natural Convection in a Square Cavity Containing a Nanofluid and an Adiabatic Square Block at the Center, Superlattices Microstruct. 52 (2012) 261–275 [CrossRef] [Google Scholar]
  22. A. Bejan, Convection heat transfer, John Wiley & Sons, Inc., Hoboken, New jersey, USA, 2004 [Google Scholar]
  23. K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluid, Int. J. Heat Mass Transfer 46 (2003) 3639–3653 [Google Scholar]
  24. Y. He, Y. Men, Y. Zhao, H. Lu, Y. Ding, Numerical investigation into the convective heat transfer of TiO2 nanofluids flowing through a straight tube under the laminar flow conditions, Appl. Therm. Eng. 29 (2009) 1965–1972 [CrossRef] [Google Scholar]
  25. S.V. Patankar, Numerical Heat transfer and fluid flow, Hemisphere Publishing Corporating, Taylor and Francis Group, New York, 1980 [Google Scholar]
  26. H.F. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow 29 (2008) 1326–1336 [CrossRef] [Google Scholar]
  27. A. Arefmanesh, M. Amini, M. Mahmoodi, M. Najafi, Buoyancy-driven heat transfer analysis in two-square duct annuli filled with a nanofluid, Eur. J. Mech. B/Fluids 33 (2012) 95–104 [Google Scholar]
  28. R.J. Krane, J. Jessee, Some detailed field measurements for a natural convection flow in a vertical square enclosure, In: 1st ASME-JSME Ther. Eng. Conf., 1983, Vol. 1, pp. 323–329 [Google Scholar]
  29. Y. Varol, A. Koca, H.F. Oztop, Natural convection in a triangle enclosure with flush mounted heater on the wall, Int. Commun. Heat Mass Transfer 33 (2006) 951–958 [CrossRef] [Google Scholar]
  30. H. Asan, L. Namli, Laminar natural convection in a pitched roof of triangular cross-section: summer day boundary conditions, Energy and Buildings 33 (2000) 69–73 [CrossRef] [Google Scholar]
  31. C. Lei, S.W. Armfield, J.C. Patterson, Unsteady natural convection in a water-filled isosceles triangular enclosure heated from below, Int. J. Heat Mass Transfer 51 (2008) 2637–2650 [CrossRef] [Google Scholar]
  32. E.H. Ridouane, A. Campo, M. Mc Garry, Numerical computation of buoyant airflows confined to attic spaces under opposing hot and cold wall conditions, Int. J. Thermal Sci. 44 (2005) 944–952 [CrossRef] [Google Scholar]
  33. D.G. Briggs, D.N. Jones, Two-dimensional periodic natural convection in an enclosure of aspect ratio one, J. Heat Transfer 107 (1985) 850–854 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.