Open Access
Mechanics & Industry
Volume 17, Number 7, 2016
STANKIN: Advanced scientific studies and research in Mechanical Engineering
Article Number 714
Number of page(s) 8
Published online 30 December 2016
  1. T. Wohlers, Wohlers Report 2016: 3D Printing and Additive Manufacturing State of the Industry - Annual Worldwide Progress Report, Wohlers Associates, Inc, Fort Collins, Colarado, 2016 [Google Scholar]
  2. S.N. Grigoriev, V.I. Teleshevskii, Measurement problems in technological shaping processes, Measurement Techniques 54 (2011) 744–749 [CrossRef] [Google Scholar]
  3. W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, A.M. Rubenchik, Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges, Appl. Physics Rev. 2 (2015) 041304 [Google Scholar]
  4. S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Materialia 108 (2016) 36–45 [Google Scholar]
  5. D. Gua, H. Wanga, F. Changa, D. Daia, P. Yuana, Y.-C. Hagedornc, W. Meiners, Selective Laser Melting Additive Manufacturing of TiC/AlSi10Mg Bulk-form Nanocomposites with Tailored Microstructures and Properties, Physics Procedia 56 (2014) 108–116 [CrossRef] [Google Scholar]
  6. M. Merklein, R. Plettke, D. Junker, A. Schaub, B. Ahuja, Mechanical Testing of Additive Manufactured Metal Parts, Key Engineering Materials 651-653 (2015) 713–718 [Google Scholar]
  7. I.V. Zhirnov, P.A. Podrabinnik, A.A. Okunkova, A.V. Gusarov, Laser beam profiling: experimental study of its influence on single-track formation by selective laser melting, Mechanics & Industry 16 (2015) 709 [CrossRef] [EDP Sciences] [Google Scholar]
  8. A. Okunkova, P. Peretyagin, Yu. Vladimirov, M. Volosova, R. Torrecillas, S.V. Fedorov, Laser-beam modulation to improve efficiency of selecting laser melting for metal powders, Proc. SPIE 9135 Laser Sources and Applications II (May 1, 2014) 913524 [Google Scholar]
  9. A. Okunkova, M. Volosova, P. Peretyagin, Yu. Vladimirov, I. Zhirnov, A.V. Gusarov, Experimental approbation of selective laser melting powders by usage of non-Gaussian power density distribution, Phys. Proc. 56 (2014) 48–57 [CrossRef] [Google Scholar]
  10. I. Yadroitsev, A. Gusarov, I. Yadroitsava, I. Smurov, Single track formation in selective laser melting of metal powders, J. Mater. Process. Technol. 210 (2010) 1624–1631 [CrossRef] [Google Scholar]
  11. I. Yadroitsev, P. Bertrand, G. Antonenkova, S. Grigoriev, I. Smurov, Use of track/layer morphology to develop functional parts by selective laser melting, J. Laser Appl. 5 (2013) 052003 [CrossRef] [Google Scholar]
  12. D. Kotoban, S. Grigoriev, I. Shishkovsky, Study of 3D laser cladding for Ni85Al15 superalloy, Phys. Proc. 56 (2014) 262–268 [CrossRef] [Google Scholar]
  13. T.V. Tarasova, Prospects of the use of laser radiation for raising the wear resistance of corrosion-resistant steels, Metal Sci. Heat Treatment 52 (2010) 284–288 [CrossRef] [Google Scholar]
  14. P.W. Rhodes, D.L. Shealy, Refractive optical systems for irradiance redistribution of collimated radiation: their design and analysis, Appl. Opt. 19 (1980) 3545–3553 [CrossRef] [PubMed] [Google Scholar]
  15. C.Y. Han, Y. Ishii, K. Murata, Reshaping collimated laser beams with Gaussian profile to uniform profiles, Appl. Opt. 22 (1983) 3644–3647 [CrossRef] [PubMed] [Google Scholar]
  16. C. Wang, D.L. Shealy, Design of gradient-index lens systems for laser beam reshaping, Appl. Opt. 32 (1993) 4763–4769 [CrossRef] [PubMed] [Google Scholar]
  17. K. Nemoto, T. Fujii, N. Goto, T. Nayuki, Transformation of a laser beam intensity profile by a deformable mirror, Opt. Lett. 21 (1996) 168–170 [CrossRef] [PubMed] [Google Scholar]
  18. J. Jia, C. Zhou, X. Sun, L. Liu, Superresolution laser beam shaping, Appl. Opt. 43 (2004) 2112–2117 [CrossRef] [PubMed] [Google Scholar]
  19. A. Hendriks, D. Naidoo, F.S. Roux, C. López-Mariscal, A. Forbes, The generation of flat-top beams by complex amplitude modulation with a phase-only spatial light modulator, Proc. SPIE 8490, Laser Beam Shaping XIII, 849006 (October 15, 2012) [Google Scholar]
  20. F.M. Dickey, S.C. Holswade, D.L. Sheal, Laser Beam Shaping Application, Taylor and Francis Group, CRC Press, 2006 [Google Scholar]
  21. R. Voelkel, K.J. Weible, Laser Beam Homogenizing: Limitations and Constraints, Proc. SPIE 7102, Optical Fabrication, Testing, and Metrology III, 71020J (September 25, 2008) [Google Scholar]
  22. H. Ma, Z. Liu, P. Zhou, X. Wang, Y. Ma, X. Xu, Generation of flat-top beam with phase-only liquid crystal spatial light modulators, J. Opt. 12 (2010) 045704 [CrossRef] [Google Scholar]
  23. R. Bourouis, K. Ait Ameur, H. Ladjouze, Optimization of the Gaussian beam flattening using a phaseplate, J. Mod. Opt. 44 (1997) 1417–1427 [CrossRef] [Google Scholar]
  24. D.L. Shealy, J.A. Hoffnagle, Laser beam shaping profiles and propagation, Appl. Opt. 45 (2006) 5118–5131 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.