Open Access
Issue |
Mechanics & Industry
Volume 18, Number 1, 2017
|
|
---|---|---|
Article Number | 105 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/meca/2016021 | |
Published online | 26 October 2016 |
- F. Incropera, Fundamentals of heat and mass transfer, John Wiley & Sons, 2002 [Google Scholar]
- ASTM C 518, Standard test method for steady-state thermal transmission properties by means of the heat flow meter apparatus, 2002 [Google Scholar]
- ASTM C 1113, Standard test method for thermal conductivity of refractories by hot wire (platinum resistance thermometer technique), 1999 [Google Scholar]
- ASTM C 177, Standard test method for steady-state heat flux measurements and thermal transmission properties by means of the guarded-hot-plate apparatus, 2004. [Google Scholar]
- ASTM F 433, Standard practice for evaluating thermal conductivity of gasket materials, 2002 [Google Scholar]
- ASTM E 1225, Standard test method for thermal conductivity of solids by means of the guarded-comparative-longitudinal heat flow technique, 2004 [Google Scholar]
- ASTM E 1461, Standard test method for thermal diffusivity by the flash method, 2001 [Google Scholar]
- R. Tye, The measurement of thermal conductivity by comparative method, in: Compendium of thermophysical property measurement methods, edited by K.D. Maglic, A. Cezairliyan, V.E. Peletsky, Plenum Press, 1992, 77–97 [Google Scholar]
- R. Barea, R. Marin, M.I. Osendi, R. Martinez, P. Miranzo, Equipo comparativo para la medida de conductividad térmica de materiales cerámicos (Comparative device for measuring thermal conductivity of ceramic materials), Cerámica y vidrio 45 (2006) 80–86 [Google Scholar]
- F. Jones, F. Pascal, Numerical simulation of divided-bar thermal conductivity measurements, Studia geophysica et geodaetica 37 (1993) 234–257 [CrossRef] [Google Scholar]
- L. Lira, R. González, E. Méndez-Lango, Sistema de medición de la conductividad térmica de materiales sólidos conductores, diseño y construcción (Measuring system of thermal conductivity in solid conductive materials), Simposio de Metrología, CENAM, Santiago de Querétaro, Qro., 2008, 1–11 [Google Scholar]
- A. Slifka, Thermal-conductivity apparatus for steady-state, comparative measurement of ceramic coatings, J. Res. Nat. Inst. Stand. Technol. 105 (2000) 591–605 [CrossRef] [Google Scholar]
- J. Albáñes, F. Abellán, R. Valerdi, J. García, Conductividad térmica de una barra de cobre. Estudio experimental del transitorio (Thermal conductivity of a copper bar. Experimental study of the transient), Latin-American J. Phys. Educ. 2 (2008) 259–267 [Google Scholar]
- C. Xing, C. Jensen, H. Ban, J. Phillips, Uncertainty analysis on the design of thermal conductivity measurement by a guarded cut-bar technique, Meas. Sci. Technol. 22 (2011) 075702 [CrossRef] [Google Scholar]
- C. Xing, C. Jensen, H. Ban, J. Phillips, Error evaluation of a thermal conductivity measurement system for TRISO fuel compact, American Nuclear Society, Annual Meeting Hollywood, FL 2011, 293–294 [Google Scholar]
- C. Jensen, C. Xing, H. Ban, J. Phillips, Validation of a thermal conductivity measurement system for fuel compacts, Proc. ASME/JSME 2011 8th Thermal Eng. Joint Conf., Honolulu, Hawaii, USA 2011, 1–10 [Google Scholar]
- C. Jensen, C. Xing, C. Folsom, H. Ban, J. Phillips, Design and validation of a high-temperature comparative thermal-conductivity measurement system, Int. J. Thermophys. 33 (2012) 311–329 [Google Scholar]
- S. Reif-Acherman, Early and current experimental methods for determining thermal conductivities of metals, Int. J. Heat Mass Transfer 77 (2014) 542–563 [Google Scholar]
- Ch. Xing, C. Jensen, Ch. Folsom, H. Ban, Douglas W. Marshall, An optimal guarding scheme for thermal conductivity measurement using a guarded cut-bar technique, part 1 experimental study, Appl. Thermal Eng. 62 (2014) 850–857 [Google Scholar]
- Changhu Xing, C. Jensen, Ch. Folsom, H. Ban, D. W. Marshall, An optimal guarding scheme for thermal conductivity measurement using a guarded cut-bar technique, part 2 guarding mechanism, Appl. Thermal Eng. 59 (2013) 504–514 [CrossRef] [Google Scholar]
- S. Patankar, Numerical heat transfer and fluid flow, Hemisphere Publishing Co., New York, 1980 [Google Scholar]
- J. Esquivel-Ramón, Diseño térmico de un instrumento de barras cortadas para medir conductividad térmica de sólidos conductores (Thermal design of cut bar instrument to measure thermal conductivity of solids conductors materials), Master Thesis, CENIDET, 2010 [Google Scholar]
- M.N. Özisik, Heat Conduction, McGraw-Hill, 1993 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.