Free Access
Issue
Mechanics & Industry
Volume 18, Number 2, 2017
Article Number 201
Number of page(s) 19
DOI https://doi.org/10.1051/meca/2016027
Published online 26 January 2017
  1. F. Schafer, S. Muller, T. Uffinger, S. Becker, J. Grabinger, M. Kaltenbacher, Fluid-structure-acoustics interaction of the flow past a thin flexible structure, AIAA J. 48 (2010) 738–748 [Google Scholar]
  2. M. Hartmann, J. Ocker, T. Lemke, A. Mutzke, V. Schwarz, H. Tokuno, R. Toppinga, P. Unterlechner, G. Wickern, Wind noise caused by the a-pillar and the side mirror flow of a generic vehicle model, in: 18th AIAA/CEAS Aeroacoustic Conference, AIAA paper 2012–2205, 2012 [Google Scholar]
  3. B. Arguillat, D. Ricot, C. Bailly, G. Robert, Measured wavenumber-frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations, J. Acoust. Soc. Am. 128 (2010) 1647–1655 [CrossRef] [PubMed] [Google Scholar]
  4. T. Bravo, C. Maury, A synthesis approach for reproducing the response of aircraft panels to a turbulent boundary layer excitation, J. Acoust. Soc. Am 129 (2011) 143–153 [CrossRef] [PubMed] [Google Scholar]
  5. A. Hekmati, D. Ricot, Ph. Druault, Numerical synthesis of aeroacoustic wall pressure fields over a flat plate: Generation, transmission and radiation analyses, J. Sound Vib. 332 (2013) 3163–3176 [Google Scholar]
  6. O. Robin, A. Berry, S. Moreau, S. Campeau, Experimental reproduction of random pressure fields for vibroacoustic testing of plane panels experimental reproduction of random pressure fields for vibroacoustic testing of plane panels, in: 19th AIAA/CEAS Aeroacoustic Conference, AIAA paper 2013–2027, 2013. [Google Scholar]
  7. W. Blake, Mechanics of flow-induced sound and vibration, Academic Press, London, 1986, Vols. I and II [Google Scholar]
  8. Ph. Druault, A. Hekmati, D. Ricot, Discrimination of acoustic and turbulent components from aeroacoustic wall pressure field, J. Sound Vib. 332 (2013) 7257–7278 [Google Scholar]
  9. T.M. Farabee, M. Cassarella, Measurements of fluctuating wall pressure for separated/reattached boundary layer flows, J. Vib. Acoust. Stress Reliab. Design 108 (1986) 301–307 [CrossRef] [Google Scholar]
  10. J.F. Largeau, V. Moriniere, Wall pressure fluctuations and topology in separated flows over a forward-facing step, Exp. Fluids 42 (2007) 21–40 [Google Scholar]
  11. M. Sherry, D. Lo Jacono, J. Sheridan, An experimental investigation of the recirculation zone formed downstream of a forward facing step, J. Wind Eng. Ind. Aerodynamics 98 (2010) 888–894 [CrossRef] [Google Scholar]
  12. T.M. Farabee, P.J. Zoccola, Experimental evaluation of noise due to flow over surface steps, in: ASME International Mechanical Engineering Congress and Exposition, 1998 [Google Scholar]
  13. M. Jacob, A. Louisot, D. Juvé, S. Guerrand, Experimental study of sound generated by backward-facing steps under wall jet, AIAA J. 39 (2001) 1254–1260 [Google Scholar]
  14. S. Becker, M. Escobar, C. Hahn, I. Ali, M. Kaltenbacher, B. Basel, M. Grunewald, Experimental and numerical investigation of the flow induced noise from a forward facing step, in: 11th AIAA/CEAS Aeroacoustics Conference, AIAA paper 2005–3006 2005 [Google Scholar]
  15. M.R. Catlett, Flow induced noise from turbulent flow over steps and gaps, Master’s thesis, Virginia Polytechnic Institute and State University, 2010 [Google Scholar]
  16. M. Ji, M. Wang, Sound generation by turbulent boundary-layer flow over small steps, J. Fluid Mech. 654 (2010) 161–193 [Google Scholar]
  17. Y. Moon, J. Seo, Y. Bae, M. Roger, S. Becker, A hybrid prediction method for low-subsonic turbulent flow noise, Comput. Fluids 39 (2010) 1125–1135 [Google Scholar]
  18. I. Ali, S. Becker, J. Utzmann, C. Munz, Aeroacoustic study of a forward facing step using linearized Euler equations, Physica D 237 (2008) 2184–2189 [Google Scholar]
  19. C. Scheit, A. Esmaeili, S. Becker, Direct Numerical Simulation of flow over a forward-facing step – flow structure and aeroacoustic source regions, Int. J. Heat Fluid Flow 43 (2013) 184–193 [Google Scholar]
  20. M. Awasthi, High Reynolds number turbulent boundary layer flow over small forward facing steps, Master’s thesis, Virginia Polytechnic Institute and State University, 2012 [Google Scholar]
  21. S. Glegg, B. Bryan, W. Devenport, M. Awasthi, Sound radiation from forward facing steps, in: 18th AIAA/CEAS Aeroacoustics Conference, AIAA paper 2012–2050, 2012 [Google Scholar]
  22. M. Awasthi, J. Forest, M. Morton, W. Devenport, S. Glegg, The disturbance of a high Reynolds number turbulent boundary layer by small forward steps, in: 17th AIAA/CEAS Aeroacoustics Conference, AIAA paper 2011–2777, 2011 [Google Scholar]
  23. D. Wilhelm, C. Hartel, L. Kleiser, Computational analysis of the two-dimensional-three-dimensional transition in forward-facing step flow, J. Fluid Mech. 489 (2003) 1–27 [Google Scholar]
  24. H. Stüer, Investigation of separation on a forward facing step, Ph.D. thesis, Swiss Federal Institute of Technology Zürich, 1999 [Google Scholar]
  25. P. Holmes, J. Lumley, G. Berkooz, Turbulence, coherent structures, dynamical systems and symmetry, Cambridge monograph on mechanics, 1996 [Google Scholar]
  26. E. Gaudard, Ph. Druault, R. Marchiano, F. Van Herpe, About the pod application for separating acoustic and turbulent fluctuations from wall pressure synthesised field, Int. J. Aerodynamics 4 (2014) 108–133 [CrossRef] [Google Scholar]
  27. S. Lu, P. Sagaut, Pseudo-characteristic formulation and dynamic boundary conditions for computational aeroacoustics, Int. J. Num. Meth. Fluids 53 (2007) 201–227 [CrossRef] [Google Scholar]
  28. A. Deneuve, Ph. Druault, R. Marchiano, P. Sagaut, A coupled time-reversal complex differentiation method for aeroacoustic sensitivity analysis: towards a source detection procedure, J. Fluid Mech. 642 (2010) 181–212 [Google Scholar]
  29. Ph. Druault, R. Marchiano, P. Sagaut, Localization of aeroacoustics sound sources in viscous flows by a time reversal method, J. Sound Vib. 332 (2013) 3655–3669 [Google Scholar]
  30. J. Sesterhenn, A characteristic-type formulation of the Navier-Stokes equations for high order upwind schemes, Comput. Fluids 30 (2001) 37–67 [Google Scholar]
  31. OpenFOAM: The Open Source CFD Toolbox, http://foam.sourceforge.net/docs/Guides-a4/ProgrammersGuide.pdf (2014). [Google Scholar]
  32. H. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, Comput. Phys. 12 (1998) 620–631 [CrossRef] [Google Scholar]
  33. E. Gaudard, Développement d’outils pour l’analyse de champs aéroacoustiques à l’origine du bruit dans un habitacle automobile, Ph.D. thesis, University Pierre et Marie Curie, Paris 6, 2014 [Google Scholar]
  34. N.M. Newmark, A method of computation for structural dynamics, J. Eng. Mech. Division (Proceedings of the ASCE) (1959) 67–94 [Google Scholar]
  35. M. Ji, M. Wang, Surface pressure fluctuations on steps immersed in turbulent boundary layers, J. Fluid Mech. 712 (2012) 471–504 [Google Scholar]
  36. Y. Moon, Y. Bae, M.H. Cho, Numerical investigation of the aerodynamic noise from a forward facing step, in: ECCOMAS CFD Conference, 2006 [Google Scholar]
  37. S. Roudnitzky, Ph. Druault, P. Guibert, Proper Orthogonal Decomposition of in-cylinder engine flow into mean component, coherent structures and random Gaussian fluctuations, J. Turbulence 7 (2006) 1–19 [CrossRef] [MathSciNet] [Google Scholar]
  38. P. Druault, C. Chaillou, Use of Proper Orthogonal Decomposition for reconstructing the 3D in-cylinder mean-flow field from PIV data, C.R. Mecanique 335 (2007) 42–47 [CrossRef] [Google Scholar]
  39. J. Lumley, The structure of inhomogeneous turbulent flows, in: Yaglom, Tatarsky (Eds.), Atm. Turb. and Radio wave Prop., 1967, pp. 166–178 [Google Scholar]
  40. A. Hekmati, D. Ricot, Ph. Druault, About the convergence of POD and EPOD modes computed from CFD simulation, Comput. Fluids 50 (2011) 60–71 [Google Scholar]
  41. S. Ravindran, Control of flow separation over a forward-facing step by model reduction, Comput. Methods Appl. Mech. Eng. 191 (2002) 4599–4617 [Google Scholar]
  42. J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex fourier series, Math. Comput. 19 (1965) 297–301 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.