Open Access
Issue
Mechanics & Industry
Volume 18, Number 4, 2017
Article Number 407
Number of page(s) 14
DOI https://doi.org/10.1051/meca/2017014
Published online 28 August 2017
  1. M.S. Khelifi-Touhami, A. Benbrik, D. Lemonnier, D. Blay, Laminar natural convection flow in a cylindrical cavity application to the storage of LNG, J. Petrol. Sci. Eng. 71 (2010) 126–132 [CrossRef] [Google Scholar]
  2. Z. Bocu, Z. Altac, Laminar natural convection heat transfer and air flow in three-dimensional rectangular enclosures with pin arrays attached to hot wall, Appl. Therm. Eng. 31 (2011) 3189–3195 [CrossRef] [Google Scholar]
  3. C. Sasmal, R.P. Chhabra, Effect of orientation on laminar natural convection from a heated square cylinder in power-law liquids, Int. J. Therm. Sci. 57 (2012) 112–125 [CrossRef] [Google Scholar]
  4. A. Chandra, R.P. Chhabra, Laminar free convection from a horizontal semi-circular cylinder to power-law fluids, Int. J. Heat Mass Transfer 55 (2012) 2934–2944 [CrossRef] [Google Scholar]
  5. A.K. Gupta, C. Sasmal, M. Sairamu, R.P. Chhabra, Laminar and steady free convection in power-law fluids from a heated spheroidal particle: a numerical study, Int. J. Heat Mass Transfer 75 (2014) 592–609 [CrossRef] [Google Scholar]
  6. D. Sadaoui, A. Sahi, H. Nadjib, B. Meziani, T. Amoura, Free convection in a square enclosure with a finned plate, Mech. Ind. 16 (2015) 310 [Google Scholar]
  7. Y. Gulberg, Y. Feldman, On laminar natural convection inside multi-layered spherical shells, Int. J. Heat Mass Transfer 91 (2015) 908–921 [CrossRef] [Google Scholar]
  8. N.S. Gibanov, M.A. Sheremet, I. Pop, Free convection in a trapezoidal cavity filled with a micropolar fluid, Int. J. Heat Mass Transfer 99 (2016) 831–838 [CrossRef] [Google Scholar]
  9. C. Liao, C. Lin, Influences of a confined elliptic cylinder at different aspect ratios and inclinations on the laminar natural and mixed convection flows, Int. J. Heat Mass Transfer 55 (2012) 6638–6650 [CrossRef] [Google Scholar]
  10. M. Saidi, G. Karimi, Free convection cooling in modified L-shape enclosures using copperewater nanofluid, Energy 70 (2014) 251–271 [CrossRef] [Google Scholar]
  11. M. Bouhalleb, H. Abbassi, Natural convection of nanofluids in enclosures with low aspect ratios, Int. J. Hydrog. Energy 39 (2014) 15275–15286 [CrossRef] [Google Scholar]
  12. A. Sahi, D. Sadaoui, B. Meziani, K. Mansouri, Effects of thermal boundary conditions, surface radiation and aspect ratio on thermal performance in “T” shallow cavity, Mech. Ind. 15 (2014) 557–568 [CrossRef] [EDP Sciences] [Google Scholar]
  13. S.C. Saha, Y.T. Gu, Natural convection in a triangular enclosure heated from below and non-uniformly cooled from top, Int. J. Heat Mass Transfer 80 (2015) 529–538 [CrossRef] [Google Scholar]
  14. S. Yigit, R.J. Poole, N. Chakraborty, Effects of aspect ratio on laminar Rayleigh–Bénard convection of power-law fluids in rectangular enclosures: a numerical investigation, Int. J. Heat Mass Transfer 91 (2015) 1292–1307 [CrossRef] [Google Scholar]
  15. S.M. Mirabedin, F. Farhadi, Natural convection in circular enclosures heated from below for various central angles, Case Stud. Therm. Eng. 8 (2016) 322–329 [CrossRef] [Google Scholar]
  16. D. Sadaoui, A. Sahi, A. Djerrada, K. Mansouri, Coupled radiation and natural convection within an inclined sinusoidal solar collector heated from below, Mech. Ind. 17 (2016) 302 [Google Scholar]
  17. J. Baumgartl, A. Hubert, G. Muller, The use of magneto hydrodynamic effects to investigate fluid flow in electrically conducting melts, Phys. Fluids 5 (1993) 3280–3289 [CrossRef] [Google Scholar]
  18. J.S. Walker, B.F. Picologlou, G. Muller, Liquid metal flow in insulating rectangular expansion with a strong magnetic field, J. Fluid Mech. 305 (1995) 111–126 [CrossRef] [Google Scholar]
  19. R. Touihri, H. Ben Hadid, On the onset of convective instabilities in cylindrical cavities heated from below. II. Effect of a magnetic field, Phys. Fluids 11 (1998) 2089–2099 [CrossRef] [Google Scholar]
  20. P.A. Davidson, Magnetohydrodynamics in materials processing, Annu. Rev. Fluid Mech. 31 (1999) 273–300 [CrossRef] [Google Scholar]
  21. A. Juel, T. Mullin, H. Ben Hadid, D. Henry, Magnetohydrodynamic convection in molten gallium, J. Fluid Mech. 378 (1999) 97–118 [CrossRef] [MathSciNet] [Google Scholar]
  22. N.B. Morley, S. Smolentsev, L Barleon, I.R. Kirillov, M. Takahashi, Liquid magnetohydrodynamics – recent progress and future directions for fusion, Fusion Eng. Des. 51–52 (2000) 701–713 [CrossRef] [Google Scholar]
  23. P. Kandaswamy, S. Malliga Sundari, N. Nithyadev, Magnetoconvection in an enclosure with partially active vertical walls, Int. J. Heat Mass Transfer 51 (2008) 1946–1954 [CrossRef] [Google Scholar]
  24. M. Pirmohammadi, M. Ghassemi, G.A. Sheikhzadeh, Effect of magnetic field on buoyancy driven convection in differentially heated square cavity, IEEE Trans. Magn. 45 (2009) 407–411 [CrossRef] [Google Scholar]
  25. M. Hasanuzzaman, H.F. Öztop, M.M. Rahman, N.A. Rahim, R. Saidur, Y. Varol, Magnetohydrodynamic natural convection in trapezoidal cavities, Int. Commun. Heat Mass Transfer 39 (2012) 1384–1394 [CrossRef] [Google Scholar]
  26. S.M. Aminossadati, B. Ghasemib, A. Kargar, Computational analysis of magnetohydrodynamic natural convection in a square cavity with a thin fin, Eur. J. Mech. B Fluids 46 (2014) 154–163 [CrossRef] [MathSciNet] [Google Scholar]
  27. B.K. Jha, B. Aina, S. Isa, Fully developed MHD natural convection flow in a vertical annular microchannel: an exact solution, J. King Saud Univ. Sci 27 (2015) 253–259 [CrossRef] [Google Scholar]
  28. M.M. Rahman, S. Mojumder, S. Saha, A.H. Joarder, R. Saidur, A.G. Naim, Numerical and statistical analysis on unsteady magnetohydrodynamic convection in a semi-circular enclosure filled with ferrofluid, Int. J. Heat Mass Transfer 89 (2015) 1316–1330 [CrossRef] [Google Scholar]
  29. A.K. Hussein, H.R. Ashorynejad, S. Sivasankaran, L. Kolsi, M. Shikholeslami, I.K. Adegun, Modeling of MHD natural convection in a square enclosure having an adiabatic square shaped body using Lattice Boltzmann Method, Alex. Eng. J. 55 (2016) 203–214 [CrossRef] [Google Scholar]
  30. N.M. Al-Najem, K.M. Khanafer, M.M. El-Refaee, Numerical study of laminar natural convection in tilted enclosure with transverse magnetic field, Int. J. Numer. Methods Heat Fluid Flow 8 (1998) 651–672 [CrossRef] [Google Scholar]
  31. M. Syou, T. Tagawa, H. Ozoe, Average heat transfer rates measured and numerically analyzed for combined convection of air in an inclined cylindrical enclosure due to both magnetic and gravitational fields, Exp. Therm. Fluid Sci. 27 (2003) 891–899 [CrossRef] [Google Scholar]
  32. M.C. Ece, E. Büyük, Natural-convection flow under a magnetic field in an inclined rectangular enclosure heated and cooled on adjacent walls, Fluid Dyn. Res. 38 (2006) 564–590 [CrossRef] [Google Scholar]
  33. M. Pirmohammadi, M. Ghassemi, Effect of magnetic field on convection heat transfer inside a tilted square enclosure, Int. Commun. Heat Mass Transfer 36 (2009) 776–780 [CrossRef] [Google Scholar]
  34. M.A. Teamah, A.F. Elsafty, E.Z. Massoud, Numerical simulation of double-diffusive natural convective flow in an inclined rectangular enclosure in the presence of magnetic field and heat source, Int. J. Therm. Sci. 52 (2012) 161–175 [CrossRef] [Google Scholar]
  35. M.A. Teamah, A.K. Hussein, R.N. Mohammed, Studying the effects of a longitudinal magnetic field and discrete isoflux heat source size on natural convection inside a tilted sinusoidal corrugated enclosure, Comput. Math. Appl. 64 (2012) 476–488 [CrossRef] [Google Scholar]
  36. N. Rudraiah, M. Venkatachalappa, C.K. Subbaraya, Combined surface tension and buoyancy-driven convection in rectangular open cavity the presence of a magnetic field, Int. J. Non-Linear Mech. 30 (1995) 759–770 [CrossRef] [Google Scholar]
  37. A.J. Chamkha, H. Al-Naser, Hydromagnetic double-diffusive convection in a rectangular enclosure with uniform side heat and mass fluxes and opposing temperature and concentration gradients, Int. J. Therm. Sci. 41 (2002) 936–948 [CrossRef] [Google Scholar]
  38. M. Changfeng, Lattice BGK simulations of double diffusive natural convection in a rectangular enclosure in the presences of magnetic field and heat source, Nonlinear Anal. Real World Appl. 10 (2009) 2666–2678 [CrossRef] [MathSciNet] [Google Scholar]
  39. M. Sathiyamoorthy, A. Chamkha, Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall(s), Int. J. Therm. Sci. 49 (2010) 1856–1865 [CrossRef] [Google Scholar]
  40. M. Venkatachalappa, Y. Do, M. Sankar, Effect of magnetic field on the heat and mass transfer in a vertical annulus, Int. J. Eng. Sci. 49 (2011) 262–278 [CrossRef] [Google Scholar]
  41. M.A. Mansour, M.A.Y. Bakier, Influence of thermal boundary conditions on MHD natural convection in square enclosure using Cu-water nanofluid, Energy Rep. 1 (2015) 134–144 [CrossRef] [Google Scholar]
  42. A.K. Hussein, M.A.Y. Bakier, M.B.B. Hamida, S. Sivasankaran, Magneto-hydrodynamic natural convection in an inclined T-shaped enclosure for different nanofluids and subjected to a uniform heat source, Alexandia, Eng. J. 55 (2016) 2157–2169 [Google Scholar]
  43. M.A. Sheremet, I. Pop, N.C. Rosca, Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid: Buongiorno's mathematical model, J. Taiwan Inst. Chem. Eng. 61 (2016) 211–222 [CrossRef] [Google Scholar]
  44. N.S. Bondareva, M.A. Sheremet, Effect of inclined magnetic field on natural convection melting in a square cavity with a local heat source, J. Magn. Magn. Mater. 419 (2016) 476–484 [CrossRef] [Google Scholar]
  45. C. Chen, C. Cheng, Predictions of buoyancy-induced flow in various across-shape concave enclosures, Int. Commun. Heat Mass Transfer 38 (2011) 442–448 [CrossRef] [Google Scholar]
  46. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, Taylor and Francis Group, New York, 1980, pp. 113–137 [Google Scholar]
  47. I.E. Sarris, G.K. Zikos, A.P. Grecos, N.S. Vlachos, On the limits of validity of the low magnetic Reynolds number approximation in MHD natural-convection heat transfer, Numer. Heat Transf. B: Fundam. 50 (2006) 157–180 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.