Free Access
Issue
Mechanics & Industry
Volume 18, Number 6, 2017
Article Number 601
Number of page(s) 15
DOI https://doi.org/10.1051/meca/2017031
Published online 08 December 2017
  1. I.M. Dagwa, A.O.A. Ibhadode, Some physical and mechanical properties of asbestos − free experimental brake pad, J. Raw Mater. Res. 3 (2006) 94–103 [Google Scholar]
  2. D. Brizard, O. Chiello, J.-J. Sinou, X. Lorang, Performances of some reduced bases for the stability analysis of a disc/pads system in sliding contact, J. Sound Vib. 330 (2011) 703–720 [CrossRef] [Google Scholar]
  3. E. Wegmann, A. Stenkamp, A. Dohle, Relation between compressibility and viscoelastic material properties of a brake pad, Tech. Rep., SAE Technical Paper, 2009 [Google Scholar]
  4. E. Wegmann, A. Stenkamp, A. Dohle, Mechanical behaviour of friction materials using compression creep tests, 2010 [Google Scholar]
  5. M. Vianello, M. Tirovic, P. Bannister, An improved approach to complex eigenvalue analysis of brake squeal including thermal effects, Tech. Rep., Eurobrake Technical Paper − EB2015-NVH-017, 2015 [Google Scholar]
  6. S. Panier, P. Dufrenoy, D. Weichert, An experimental investigation of hot spots in railway disc brakes, Wear 256 (2004) 764–773 [CrossRef] [Google Scholar]
  7. F. Massi, L. Baillet, G. Oliviero, A. Sestieri, Brake squeal: linear and non-linear numerical approaches, Mech. Syst. Signal Process. 21 (2007) 2374–2393 [CrossRef] [Google Scholar]
  8. C. Mbodj, M. Renouf, L. Baillet, Y. Berthier, Modeling of carbon/carbon composites under tribological solicitations, in: STLE/ASME 2010 International Joint Tribology Conference, American Society of Mechanical Engineers, 2010, pp. 321–323 [CrossRef] [Google Scholar]
  9. N. Hoffmann, M. Fischer, R. Allgaier, L. Gaul, A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations, Mech. Res. Commun. 29 (2002) 197–205 [CrossRef] [Google Scholar]
  10. M. Triches Jr, S.N.Y. Gerges, R. Jordan, Analysis of brake squeal noise using the finite element method: a parametric study, Appl. Acoust. 69 (2008) 147–162 [CrossRef] [Google Scholar]
  11. P. Alart, F. Lebon, Numerical study of a stratified composite coupling homogenization and frictional contact, Math. Comput. Model. 28 (1998) 273–286 [CrossRef] [Google Scholar]
  12. I. Temizer, P. Wriggers, A multiscale contact homogenization technique for the modeling of third bodies in the contact interface, Comput. Methods Appl. Mech. Eng. 198 (2008) 377–396 [CrossRef] [Google Scholar]
  13. F. Barbe, L. Decker, D. Jeulin, G. Cailletaud, Intergranular and intragranular behavior of polycrystalline aggregates. Part 1: Fe model, Int. J. Plast. 17 (2001) 513–536 [CrossRef] [Google Scholar]
  14. F. Barbe, S. Forest, G. Cailletaud, Intergranular and intragranular behavior of polycrystalline aggregates. Part 2: results, Int. J. Plast. 17 (2001) 537–563 [CrossRef] [Google Scholar]
  15. G. Besnard, F. Hild, S. Roux, Finite-element displacement fields analysis from digital images: application to portevin-le châtelier bands, Exp. Mech. 46 (2006) 789–803 [CrossRef] [Google Scholar]
  16. J. Rethore, G. Besnard, G. Vivier, F. Hild, S. Roux, Experimental investigation of localized phenomena using digital image correlation, Philos. Mag. 88 (2008) 3339–3355 [CrossRef] [Google Scholar]
  17. S. Avril, M. Bonnet, A.-S. Bretelle, M. Grediac, F. Hild, P. Ienny, F. Latourte, D. Lemosse, S. Pagano, E Pagnacco, F Pierron, Overview of identification methods of mechanical parameters based on full-field measurements, Exp. Mech. 48 (2008) 381–402 [CrossRef] [Google Scholar]
  18. R. Seghir, J. Witz, L. Bodelot, E. Charkaluk, P. Dufrenoy, A thermomechanical analysis of the localization process at the microstructure scale of a 316L stainless steel, Procedia Eng. 10 (2011) 3596–3601 [CrossRef] [Google Scholar]
  19. Y. Li, V. Aubin, C. Rey, P. Bompard, The effects of variable stress amplitude on cyclic plasticity and microcrack initiation in austenitic steel 304L, Comput. Mater. Sci. 64 (2012) 7–11 [CrossRef] [Google Scholar]
  20. F. Hild, S. Roux, Digital image correlation: from displacement measurement to identification of elastic properties − a review, Strain 42 (2006) 69–80 [CrossRef] [Google Scholar]
  21. R. Seghir, J.F. Witz, S. Coudert, Yadics − digital image correlation 2/3d software, 2014, http://www.yadics.univ-lille1.fr [Google Scholar]
  22. H.T. Angus, Cast iron: physical and engineering properties, Elsevier, 2013 [Google Scholar]
  23. S.D. Voigt, S.D. Holmgren, AFS Transactions (1990), Vol. 98 [Google Scholar]
  24. T. Sjögren, F. Wilberfors, M. Alander, Digital image correlation techniques for analysing the deformation behaviour of compacted graphite cast irons on a microstructural level, in: Applied Mechanics and Materials, Trans Tech Publ, 2011, Vol. 70, pp. 171–176 [CrossRef] [Google Scholar]
  25. T. Sjögren, P.E. Persson, P. Vomacka, Analysing the deformation behaviour of compacted graphite cast irons using digital image correlation techniques, in: Key Engineering Materials, Trans Tech Publ, 2011, Vol. 457, pp. 470–475 [CrossRef] [Google Scholar]
  26. Ansys v16, SAS IP, Inc., 2016 [Google Scholar]
  27. J. Simo, T. Hughes, General return mapping algorithms for rateindependent plasticity, Const. Laws Eng. Mater.: Theory Appl. 1 (1987) 221–232 [Google Scholar]
  28. R. Mann, V. Magnier, J.-F. Brunel, F. Brunel, P. Dufrénoy, M. Henrion, Relation between mechanical behavior and microstructure of a sintered material for braking application, Wear 386 (2017) 1–16 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.