Open Access
Mechanics & Industry
Volume 18, Number 6, 2017
Article Number 609
Number of page(s) 12
Published online 06 March 2018
  1. M. Reimbert, A. Reimbert, Silo théorie et pratique, Edition Eyrolles, Paris, 1982 [Google Scholar]
  2. A. Orosz, G. Csaro, J. Tamaska, Strengthening of a 2000 wagon capacity reinforced concrete grain silo located at Marcali in Hungary, Concr. Struct. 1 (2000) 44–51 [Google Scholar]
  3. D. Yonggang Ding, J. Wang, X. Wang, W. Feng, Performance analysis of concrete silo structure strengthened with carbon fiber reinforced polymer laminate, Adv. Mater. Res. 243–249 (2011) 5501–5505 [CrossRef] [Google Scholar]
  4. Er. A.B. Dutta, Study of type of failure in silo, Glob. Res. Anal. 2 (2013) 41–43 [Google Scholar]
  5. L. Boonkok, Y.M. Hui, Protection of aged cement clinker silo againt high impact and high temperature dicharge, in: L. Ye, P. Feng, Q. Yue (Eds.), Advances in FRP Composites in Civil Engineering, Proceedings of the 5th International Conference on FRP Composites in Civil Engineering, Beijing, China, 2010, pp. 415–418 [Google Scholar]
  6. R.J. Goodey, C.J. Brown, The influence of the base boundary condition in modelling filling of a metal silo, Comput. Struct. 82 (2004) 567–579 [CrossRef] [Google Scholar]
  7. P. Vidal, E. Gallego, M. Guaita, F. Ayuga, Finite element analysis under different boundary conditions of the filling of cylindrical steel silos having an excentric hopper, J. Constr. Steel Res. 64 (2008) 480–492 [CrossRef] [Google Scholar]
  8. K. Saleh, P. Guigon, Mise en oeuvre des poudres − Stockage écoulement des silos, Techniques de L'ingénieur, J2225 (2012) 1–30 [Google Scholar]
  9. N. Kuczyńska, M. Wójcik, J. Tejchman, Effect of bulk solid on strength of cylindrical corrugated silos during filling, J. Constr. Steel Res.1 15 (2015) 1–17 [Google Scholar]
  10. M.T. Abdel-Fattah, I.D. Moore, T.T. Abdel-Fattah, A numerical investigation into the behavior of ground-supported concrete silos filled with saturated solids, Int. J. Solids Struct. 43 (2006) 3723–3738 [CrossRef] [Google Scholar]
  11. A. Lapko, M. Gnatowski, J.A. Prusiel, Analysis of some effects caused by interaction between bulk solid and r.c. silo wall structure, Powder Technol. 133 (2003) 44–53 [CrossRef] [Google Scholar]
  12. J. Tejchman, Large scale silo tests, confined granular flow in silos, in: Experimental and Numerical, Investigations, Springer Series in Geomechanics and Geoengineering, Springer International Publishing, Switzerland, 2013 [Google Scholar]
  13. Y. Wang, Y. Luc, J.Y. Ooi, A numerical study of wall pressure and granular flow in a flat-bottomed silo, Powder Technol. 282 (2015) 43–54 [CrossRef] [Google Scholar]
  14. A. Y. Elghazouli, J.M. Rotter, Long-term performance and assessment of circular reinforced concrete silos, Constr. Build. Mater. 10 (1996) 117–122 [CrossRef] [Google Scholar]
  15. F. Nateghi, M. Yakhchalian, Seismic behavior of reinforced concrete silos considering granular material-structure interaction, Procedia Eng. 14 (2011) 3050–3058 [CrossRef] [Google Scholar]
  16. I.M. Ezz El-Arab, Seismic analysis of RC silos dynamic discharge phenomena, Int. J. Eng. Adv. Technol. 4 (2014) 91–99 [Google Scholar]
  17. L. Louetri, K. Djeghaba, E. Gallego, Numerical simulation of reinforcement in steel slender silos having concentric hopper with carbon fiber-reinforced polymer composites (study of the silos filling), Eur. J. Environ. Civ. Eng. 20 (2016) 809–830 [CrossRef] [Google Scholar]
  18. Simulia, Abaqus analysis: user's manual, Dassault Systèmes, 2014 [Google Scholar]
  19. M.S. Ali, Enhancement of service life of prestressed concrete bridge, Thesis, Mcgill University, Canada, 2014 [Google Scholar]
  20. M. Moya, P.J. Aguad, F. Ayuga, Mechanical properties of some granular agricultural materials used in silo design, Int. Agrophys. 27 (2013) 181–193 [CrossRef] [Google Scholar]
  21. M. Moya, M. Guaita, P. Aguado, F. Ayuga, Mechanical properties of granular agricultural materials, part 2, Trans. ASABE, 49 (2006) 479–489 [CrossRef] [Google Scholar]
  22. M. Moya, F. Ayuga, M. Guaita, P. Aguado, Mechanical properties of granular agricultural materials, Trans. ASAE, 45 (2002) 1569–1577 [Google Scholar]
  23. H.H.A. Abdel-Rahim, Response of the cylindrical elevated wheat storage silos to seismic loading, IOSR J. Eng. 4 (2014) 42–55 [CrossRef] [Google Scholar]
  24. H.A. Janssen, Tests on grain pressure silos, Zeitschrift des Vereines Deutscher Ingenieure 39 ( 1895) 1045 [Google Scholar]
  25. J.Y. Ooi, J.F. Chen, R.A. Lohnest, J.M. Rotter, Prediction of static wall pressures in coal silos, Constr. Build. Mater. 10 (1996) 109–116 [CrossRef] [Google Scholar]
  26. M. Reimbert, L. Marcel, A. Reimbert. Silos, traité théorique et pratique, Bauverlag, 1961 [Google Scholar]
  27. A. Guerrin, traité de béton armé construction divers, Tome XI, Bordas, Paris, France, 1979 [Google Scholar]
  28. EN 1991-4, Eurocode 1. Basis of design and actions on structures-part 4: actions on silos and tanks, European Committee on Standarization, Brussels, 2006 [Google Scholar]
  29. Y. Wang, Y. Lu, J.Y. Ooi, Finite element modelling of wall pressures in a cylindrical silo with conical hopper using an Arbitrary Lagrangian-Eulerian formulation, Powder Technol. 257 (2014) 181–190 [CrossRef] [Google Scholar]
  30. B.L. Wahalathantri, D.P. Thambiratnam, T.H.T. Chan, S. Fawzia, A material model for flexural crack simulation in reinforced concrete elements using Abaqus, in: Proceedings of the First International Conference on Engineering, Designing and Developing the Built Environment for Sustainable Wellbeing, Queensland University of Technology, Brisbane, QLD, Australia, 2011, pp. 260–264 [Google Scholar]
  31. O. Omidi, V. Lotfi, Finite element analysis of concrete structures using plastic-damage model in 3-d implementation, Int. J. Civ. Eng. 8 (2010) 187–203 [Google Scholar]
  32. S. Basak, D.K. Paul, Damage evaluation of RCC containment structure subjected to internal pressure, Int. J. Eng. Sci. Technol. 4 (2012) 2823–2829 [Google Scholar]
  33. M. Chandrashekhar, R. Ganguli, Large deformation dynamic finite element analysis of delaminated composite plates using contact-impact conditions, Comput. Struct. 144 (2014) 92–102 [CrossRef] [Google Scholar]
  34. S. Ding, G.G. Enstad, Stress distribution in the material and development of loads on the wall, Task Q. 7 (2003) 513–524 [Google Scholar]
  35. D. Nortje, The anti-dynamic tube in mass flow silos, Thesis, University of Western, Australia, 2002 [Google Scholar]
  36. J.M. Rotter, J.M.F.G. Holst, J.Y. Ooi, A.M. Sanad, Silo pressure predictions using discrete-element and finite-element analyses, Philos. Trans. R. Soc. Lond. A (1998) 2685–2712 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.