Issue
Mechanics & Industry
Volume 18, Number 8, 2017
Experimental Vibration Analysis
Article Number 805
Number of page(s) 14
DOI https://doi.org/10.1051/meca/2017041
Published online 21 March 2018
  1. R. Yan, R. Zhao, R.X. Gao, Noise-assisted data processing in measurement science: part one part 40 in a series of tutorials on instrumentation and measurement, IEEE Instrum. Meas. Mag. 15 (2012) 41–44 [CrossRef] [Google Scholar]
  2. S. Marchesiello, A. Fasana, L. Garibaldi, Best parameter choice of stochastic resonance to enhance fault signature in bearings, in: International Conference on Structural Engineering Dynamics, Lagos, Portugal, 2015, pp. 1–7 [Google Scholar]
  3. C.U. Mba, S. Marchesiello, A. Fasana, L. Garibaldi, Vibration based condition monitoring of spur gears in mesh using stochastic resonance, in: Surveillance 8 International Conference, Roanne, France, 2015, pp. 1–15 [Google Scholar]
  4. C.U. Mba, S. Marchesiello, A. Fasana, L. Garibaldi, Fault detection in gears using stochastic resonance, in: Advances in Condition Monitoring of Machinery in Non-Stationary Operations, Springer, Cham, 2018, pp. 55–70 [Google Scholar]
  5. Y.G. Leng, et al., Numerical analysis and engineering application of large parameter stochastic resonance, J. Sound Vibration 292 (2006) 788–801 [CrossRef] [Google Scholar]
  6. Y. Lei, et al., Planetary gearbox fault diagnosis using an adaptive stochastic resonance method, Mech. Syst. Signal Process. 38 (2013) 113–124 [CrossRef] [Google Scholar]
  7. http://www.phmsociety.org/references/datasets, PHM Challenge Competition Data Set, 2009 [Google Scholar]
  8. R. Benzi, A. Sutera, A. Vulpiani, The mechanism of stochastic resonance, J. Phys. A: Math. General 14 (1981) L453 [CrossRef] [MathSciNet] [Google Scholar]
  9. M.D. McDonnell, D. Abbott, What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology, PLoS Comput. Biol. 5 (2009) e1000348 [CrossRef] [PubMed] [Google Scholar]
  10. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Stochastic resonance, Rev. Modern Phys. 70 (1998) 223 [CrossRef] [Google Scholar]
  11. X.-h. Chen, G. Cheng, X.-l. Shan, X. Hu, Q. Guo, H.-g. Liu, Research of weak fault feature information extraction of planetary gear based on ensemble empirical mode decomposition and adaptive stochastic resonance, Measurement 73 (2015) 55–67 [CrossRef] [Google Scholar]
  12. K. Worden, I. Antoniadou, S. Marchesiello, C. Mba, L. Garibaldi, An illustration of new methods in machine condition monitoring, Part I: stochastic resonance, J. Phys.: Conf. Ser. 842 (2017) 1–10 [CrossRef] [Google Scholar]
  13. X. Zhang et al., An adaptive stochastic resonance method based on grey wolf optimizer algorithm and its application to machinery fault diagnosis, ISA Trans. 71 (2017) 206–214 [CrossRef] [PubMed] [Google Scholar]
  14. P.D. Samuel, D.J. Pines, A review of vibration-based techniques for helicopter transmission diagnostics. J. Sound Vibration 282 (2005) 475–508 [CrossRef] [Google Scholar]
  15. M. Lebold et al., Review of vibration analysis methods for gearbox diagnostics and prognostics. in: Proceedings of the 54th Meeting of the Society for Machinery Failure Prevention Technology, 2000 [Google Scholar]
  16. P. Večeř, M. Kreidl, R. Šmíd, Condition indicators for gearbox condition monitoring systems, Acta Polytech. 45 (2005) 35–43 [Google Scholar]
  17. K. Christian et al., On the use of time synchronous averaging, independent component analysis and support vector machines for bearing fault diagnosis, in: First International Conference On Industrial Risk Engineering, Montreal, 2007 [Google Scholar]
  18. E. Bechhoefer, M. Kingsley, A review of time synchronous average algorithms, in: Annual Conference of the Prognostics and Health Management Society, San Diego, California, 2009, pp. 24–33 [Google Scholar]
  19. R.B. Randall, J. Antoni, Rolling element bearing diagnostics-a tutorial, Mech. Syst. Signal Process. 25 (2011) 485–520 [CrossRef] [Google Scholar]
  20. S. Goldman, Vibration spectrum analysis: a practical approach, Industrial Press Inc, 1999 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.