Open Access
Issue
Mechanics & Industry
Volume 19, Number 1, 2018
Article Number 101
Number of page(s) 10
DOI https://doi.org/10.1051/meca/2017036
Published online 24 August 2018
  1. T.S. Lan, Numerical optimization on plant noise control by gradient method, Int. J. Comput. Math. 86 (2009) 897–913 [CrossRef] [Google Scholar]
  2. T.J. Cox, P. D'antonio, Acoustic absorbers and diffusers: theory, design and application, CRC Press, Llc, New York, US, 2009 [Google Scholar]
  3. H. Ruiz, P. Cobo, F. Jacobsen, Optimization of multiple-layer microperforated panels by simulated annealing, Appl. Acoust. 72 (2011) 772–776 [CrossRef] [Google Scholar]
  4. Z. Bo, C. Tianning, Calculation of sound absorption characteristics of porous sintered fiber metal, Appl. Acoust. 70 (2009) 337–346 [CrossRef] [Google Scholar]
  5. M.E. Delany, E.N. Bazley, Acoustical properties of fibrous absorbent materials, Appl. Acoust. 3 (1970) 105–116 [Google Scholar]
  6. F.P. Mechel, Formulas of acoustics, Springer, Berlin, Germany, 2002 [Google Scholar]
  7. M.A. Biot, Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid I. Low-Frequency Range, Acoust. Soc. Am. 28 (1955) 168–178 [Google Scholar]
  8. K. Attenborough, Acoustical characteristics of porous materials, Phys. Rep. 82 (1982) 179–227 [CrossRef] [Google Scholar]
  9. K. Attenborough, Acoustical characteristics of rigid fibrous absorbents and granular materials, Acoust. Soc. Am. 73 (1983) 785 [Google Scholar]
  10. J. Allard, N. Atalla, Propagation of sound in porous media: modelling sound absorbing materials, Wiley, 2009 [Google Scholar]
  11. C. Zwikker, C.W. Kosten, Sound absorbing materials, Elsevier, 1949 [Google Scholar]
  12. Y. Champoux, M.R. Stinson, Experimental investigation of models of sound wave propagation in air‐saturated porous media, Acoust. Soc. Am. 88 (1990) S121 [CrossRef] [Google Scholar]
  13. Y. Champoux, M.R. Stinson, On acoustical models for sound propagation in rigid frame porous materials and the influence of shape factors, Acoust. Soc. Am. 92 (1992) 1120 [CrossRef] [Google Scholar]
  14. M.R. Stinson, The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape, Acoust. Soc. Am. 89 (1991) 550 [CrossRef] [Google Scholar]
  15. D. Wilson, Simple, relaxational models for the acoustical properties of porous media, Appl. Acoust. 50 (1997) 171–188 [CrossRef] [Google Scholar]
  16. D. Lafarge, P. Lemarinier, J.F. Allard, V. Tarnow, Dynamic compressibility of air in porous structures at audible frequencies, Acoust. Soc. Am. 102 (1997) 1995 [CrossRef] [Google Scholar]
  17. Y. Kawasima, Sound propagation in a fiber block as a composite medium, Acust. 10 (1960) 208–217 [Google Scholar]
  18. V. Tarnow, Compressibility of air in fibrous materials, Acoust. Soc. Am. 99 (1996) 3010 [CrossRef] [Google Scholar]
  19. V. Tarnow, Calculation of the dynamic air flow resistivity of fiber materials, Acoust. Soc. Am. 102 (1997) 1680 [CrossRef] [Google Scholar]
  20. K. Attenborough, L. Walker, Scattering theory for sound absorption in fibrous media, Acoust. Soc. Am. 49 (1971) 1331–1338 [CrossRef] [Google Scholar]
  21. I.D.J. Dupère, A.P. Dowling, T.J. Lu, The absorption of sound in cellular foams, ASME, (2004) [Google Scholar]
  22. G.H. Yoon, Acoustic topology optimization of fibrous material with Delany-Bazley empirical material formulation, J. Sound Vib. 332 (2013) 1172–1187 [CrossRef] [Google Scholar]
  23. M.B. Dühring, J.S. Jensen, O. Sigmund, Acoustic design by topology optimization, J. Sound Vib. 317 (2008) 557–575 [CrossRef] [Google Scholar]
  24. E.I. Kim, Y.Y. Kim, J.S. Kim, Y.J. Kang, Optimal poroelastic layer sequencing for sound transmission loss maximization by topology optimization method, Acoust. Soc. Am. 122 (2007) 2097 [CrossRef] [Google Scholar]
  25. J.S. Lee, Y.Y. Kim, J.S. Kim, Y.J. Kang, Two-dimensional poroelastic acoustical foam shape design for absorption coefficient maximization by topology optimization method, Acoust. Soc. Am. 123 (2008) 2094 [CrossRef] [Google Scholar]
  26. J.W. Lee, Y.Y. Kim, Topology optimization of muffler internal partitions for improving acoustical attenuation performance, Int. J. Numer. Methods Eng. 80 (2009) 455–477 [CrossRef] [Google Scholar]
  27. G.H. Yoon, J.S. Jensen, O. Sigmund, Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation, Int. J. Numer. Methods Eng. 70 (2007) 1049–1075 [CrossRef] [Google Scholar]
  28. H. Meng, J. Wen, H. Zhao, X. Wen, Optimization of locally resonant acoustic metamaterials on underwater sound absorption characteristics, J. Sound Vib. 331 (2012) 4406–4416 [CrossRef] [Google Scholar]
  29. Y.C. Chang, L.J. Yeh, M.C. Chiu, G.J. Lai, Shape optimization on constrained single-layer sound absorber by using GA method and mathematical gradient methods, J. Sound Vib. 286 (2005) 941–996 [CrossRef] [Google Scholar]
  30. Y.C. Chang, L.J. Yeh, M.C. Chiu, Optimization of constrained composite absorbers using simulated annealing, Appl. Acoust. 66 (2009) 341–352 [CrossRef] [Google Scholar]
  31. Y.C. Chang, L.J. Yeh, M.C. Chiu, Optimization of double‐layer absorbers on constrained sound absorption system by using genetic algorithm, Int. J. Numer. Methods Eng. 62 (2005) 317–333 [CrossRef] [Google Scholar]
  32. M.C. Chiu, Y.C. Chang, L.J. Yeh, T.S. Lan, Optimization of perforated double-layer absorbers using simulated annealing, J. Mar. Sci. Technol. 15 (2007) 351–359 [Google Scholar]
  33. L.L. Beranek, I.L. Ver, Noise and vibration control engineering-principles and applications, Noise Vib. Control Eng. −Princ. Appl. 1 (1992) 814 [Google Scholar]
  34. I. Rechenberg, Evolutions strategie: optimierung technischer systeme nach prinzipien der biologischen evolution, Frommann-Holzboog, Stuttgart, Germany, 1973 [Google Scholar]
  35. I.P. Dunn, W.A. Davern, Calculation of acoustic impedance of multi-layer absorbers, Appl. Acoust. 19 (1986) 321–334 [CrossRef] [Google Scholar]
  36. M. Garai, F. Pompoli, A simple empirical model of polyester fibre materials for acoustical applications, Appl. Acoust. 66 (2005) 1383–1398 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.