Free Access
Issue
Mechanics & Industry
Volume 19, Number 2, 2018
Article Number 207
Number of page(s) 20
DOI https://doi.org/10.1051/meca/2018027
Published online 03 September 2018
  1. J.W. Wu, M.J. Biggs, E.J. Hu, Dynamic model for the optimisation of adsorption-based desalination processes, Appl. Therm. Eng. 66 (2014) 464–473 [CrossRef] [Google Scholar]
  2. Z. Berk, Food process engineering and technology, 2nd edition, Food science and technology, International Series, Elsevier, 2013, 1–721. [Google Scholar]
  3. Q. Ruan, H. Jiang, M. Nian, Z. Yan, Mathematical modeling and simulation of countercurrent multiple effect evaporation for fruit juice concentration, J. Food Eng. 146 (2015) 243–251. [CrossRef] [Google Scholar]
  4. A.G. Reynolds, Managing Wine Quality: vol. 2 Oenology and Wine Quality, Woodhead Publishing, 2010, 589–630. [Google Scholar]
  5. D. Ageron, J.L. Escudier, Ph. Abbal, M. Moutounet, Pretreatment of grapes by flash detente under high vacuum atmosphere (Prétraitement des raisins par Flash Détente sous vide poussé), Rev. Fr. Oenol. 153 (1995) 50–54. [Google Scholar]
  6. J.L. Escudier, et al., Interest traitrement of grapes from high vacuum atmosphere for oenology (Intérêt du traitrement des raisins par un vide poussé pour l'œnologie), ONIVINS, Contrat Etat − Région, filière viti-vinicole, 1995. [Google Scholar]
  7. J.L. Escudier, M. Mikolajczak, M. Moutounet, Pretreatment of grapes by flash detente under high vacuum atmosphere and wine characteristics (Pré-traitement des raisins par flash détente sous vide et caractéristiques des vins), Journal International des Sciences de la Vigne et du Vin, hors série − Traitements Physiques des MoÛts et des Vin (1998) 105–110. [Google Scholar]
  8. E. Vinsonneau, P. Escaffre, Evaluation of winemaking process by flash detente approach in Bordeaux − Synthesis of three years of testing 1999–2001 (Evaluation du procédé de vinification par la flash-détente en bordelais − Synthèse de trois années d'essais 1999–2001), CRAT ITV, France, 2002. [Google Scholar]
  9. E. Celotti, S. Rebecca, Expériences récentes de thermo-macération des raisins rouges, Revue des Œnologues, 87 (1998) 23–28. [Google Scholar]
  10. O. Miyatake, K. Murakami, Y. Kawata, T. Fujii, Fundamental experiments with flash evaporation, Heat Transfer Japanese Res. 2 (1973) 89–100. [Google Scholar]
  11. O. Miyatake, Y. Kito, K. Tagawa, Y. Murata, Transient characteristics and performance of a novel desalination system based on heat storage and spray flashing, Desalination 137 (2001) 157–166. [CrossRef] [Google Scholar]
  12. P. Sebastian, J.P. Nadeau, Experiments and modeling of falling jet flash evaporators for vintage treatment, Int. J. Therm. Sci. 41 (2002) 269–280. [CrossRef] [Google Scholar]
  13. Agreste, Ministry of Agriculture, Food, Fisheries, Rural Affairs and Spatial Planning, Annual Agricultural Statistics, Aquitaine, French, 2010, www.agreste.agriculture.gouv.fr (last access: 18/03/2015). [Google Scholar]
  14. D. Cadiot, P. Sébastian, D. Callede, J.P. Nadeau, System for cooling a heated juice by partial low-pressure evaporation, Patent WO02096530, 2002. [Google Scholar]
  15. A. Bouchama, S. Sebastian, J.P. Nadeau, Flash evaporation, modeling and constraints formulation, Transactions on IChemE, 81(Part A) (2003) 1250–1258 [CrossRef] [Google Scholar]
  16. V. Ho Kon Tiat, P. Sebastian, J.P. Nadeau, Multicriteria-oriented preliminary design of a flash evaporation process for cooling in the wine industry, J. Food Eng. 85 (2008) 491–508. [CrossRef] [Google Scholar]
  17. V. Ho Kon Tiat, P. Sebastian, T. Quirante, Multiobjective optimization of the design of two-stage flash evaporators: Part 1: Process modeling, Int. J. Therm. Sci. 49 (2010) 2453–2458. [CrossRef] [Google Scholar]
  18. P. Sebastian, T. Quirante, V. Ho Kon Tiat, Multiobjective optimization of the design of two-stage flash evaporators: Part 2: Multiobjective optimization, Int. J. Therm. Sci. 49 (2010) 2459–2466. [CrossRef] [Google Scholar]
  19. M.S. Phadke, Quality Engineering Using Robust Design, 1st edition, Prentice Hall, 1989. [Google Scholar]
  20. P.J. Ross, Taguchi Techniques for Quality Engineering, 2nd edition, McGraw-Hill Professional, New York, 1995. [Google Scholar]
  21. G. Taguchi, S. Chowdhury, Y. Wu, Taguchi's Quality Engineering Handbook, 1st edition, Wiley-Interscience, New York, 2004. [CrossRef] [Google Scholar]
  22. J.F. Brotchie, Optimization and robustness of structural engineering systems, Eng. Struct. 19 (1997) 289–292. [CrossRef] [Google Scholar]
  23. D.B. Parkinson, Robust design by variability optimization, Qual. Reliab. Eng. Int. 13 (1997) 97–102 [CrossRef] [Google Scholar]
  24. X. Du, W. Chen, Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design, J. Mech. Des. 122 (2000) 385–394. [CrossRef] [Google Scholar]
  25. M. Ardakani, R. Noorossana, S. Niaki, H. Lahijanian, Robust Parameter Design Using the Weighted Metric Method-The Case of ‘the Smaller the Better’, Int. J. Appl. Math. Comput. Sci. 19 (2009) 59–68. [CrossRef] [Google Scholar]
  26. C. Zang, M.I. Friswell, J.E. Mottershead, A review of robust optimal design and its application in dynamics, Comput. Struct. 83 (2005) 315–326. [CrossRef] [Google Scholar]
  27. H.G. Beyer, B. Sendhoff, Robust optimization-A comprehensive survey, Comput. Methods Appl. Mech. Eng. 196 (2007) 3218–3190. [CrossRef] [MathSciNet] [Google Scholar]
  28. M. Arvidsson, I. Gremyr, Principles of robust design methodology, Qual. Reliab. Eng. Int. 24 (2008) 23–35. [CrossRef] [Google Scholar]
  29. G.I. Schuëller, H. Jensen, Computational methods in optimization considering uncertainties − An overview, Comput. Methods Appl. Mech. Eng. 198 (2008) 2–13. [CrossRef] [Google Scholar]
  30. W. Chen, J.K. Allen, A Procedure for Robust Design: Minimizing Variations caused by Noise Factors and Control Factors, J. Mech. Des. 118 (1996) 478–485. [CrossRef] [Google Scholar]
  31. W. Chen, M.M. Wiecek, J. Zhang, Quality Utility-A Compromise Programming Approach to Robust Design, J. Mech. Des. 121 (1999) 179–187. [CrossRef] [Google Scholar]
  32. M. Basseur, E. Zitzler, Handling Uncertainty in Indicator-Based Multiobjective Optimization, Int. J. Comput. Intell. Appl. 2 (2006) 255–272. [Google Scholar]
  33. D. Greiner, P. Hajela, Truss topology optimization for mass and reliability consideration-co-evolutionary multiobjective formulations, Struct. Multidiscip. Optim. 45 (2011) 589–613. [CrossRef] [MathSciNet] [Google Scholar]
  34. T. Quirante, Y. Ledoux, P. Sebastian, Multiobjective optimization including design robustness objectives for the embodiment design of a two-stage flash evaporator, Int. J. Interact. Des. Manuf. 6 (2011) 29–39. [CrossRef] [Google Scholar]
  35. P, Jacquet, C. Capdevielle, Installations vinicoles, Tome 2, Transport de la vendange et vinification, Féret, Bordeaux, 2002, 298p. [Google Scholar]
  36. M. Goedkoop, S. Effting, M. Collignon, The Eco-indicator 99: A damage oriented method for Life Cycle Impact Assessment, Manual for Designers, 2nd edition, Pré Consultants B.V., Amersfoort, The Netherlands, 2000. [Google Scholar]
  37. S.A. Leeper, Wet Cooling Tower: “Rule-of-Thumb” Design and Simulation, U.S. Department of Energy Assistant Secretary for Ressource Application, Office of Geothermal, under DOE Contract No. DE-AC07-76ID01570, 1981. [Google Scholar]
  38. K. Rehfeldt, B. Schwenk, J.P. Molly, Sensitivity study of different parameters concerning the energy generating costs of wind turbines, in: R. Watson (Eds.), Proceedings of European Wind Energy Conference, Dublin, Ireland 1997, pp. 90–93. [Google Scholar]
  39. E. Harrington, The Desirability Function, Ind. Qual. Control 21 (1965) 494–498. [Google Scholar]
  40. G. Derringer, R. Suich, Simultaneous Optimization of Several Response Variables, J. Qual. Technol. 12 (1980) 214–219. [Google Scholar]
  41. E.K. Antonsson, K.N. Otto, Imprecision in Engineering Design, Special combined issue of the transactions of the ASME commemorating the 50th anniversary of the design engineering division of the ASME 117 (1995) 25–32. [Google Scholar]
  42. M.J. Scott, E.K. Antonsson, Aggregation Functions for Engineering Design Trade-Offs, 9th International conference on design theory and methodology 2 (1995) 389–396. [Google Scholar]
  43. T.L. Saaty, Relative measurement and its generalization in decision making: Why pairwise comparisons are central in mathematics for the measurement of intangible factors − The Analytic Hierarchy/Network Process, RACSAM (Review of the Royal Spanish Academy of Sciences) 102 (2008) 251–318. [Google Scholar]
  44. M.N. Shyam, Robust Design, Seminar Report, Department of Aerospace Engineering, Indian Institute of Technology, 2002. [Google Scholar]
  45. K.J. Kim, D.K.J. Lin, Simultaneous Optimization of Mechanical Properties of Steel by Maximizing Exponential Desirability Functions, J. R. Stat. Soc. Ser. C Appl. Stat. 49 (2000) 311–325. [CrossRef] [Google Scholar]
  46. C. Coello, et al., Evolutionary Algorithms for Solving Multi-Objective Problems, 1st edition, New York, Springer, 2002. [CrossRef] [Google Scholar]
  47. K. Miettinen, Nonlinear multiobjective optimization, United States Of America, Kluwer Academic Publisher, Fourth Printing, 1999. [Google Scholar]
  48. D.E. Goldberg, Genetic algorithm: exploration, optimisation and automatic learning (Algorithmes génétiques: Exploration, optimisation et apprentissage automatique), Addison-Wesley, France, 1996. [Google Scholar]
  49. K. Deb, Evolutionary Algorithms for Multi-Criterion Optimization in Engineering Design, Evol. Algorithms Eng. Comput. Sci. 2 (1999) 135–161. [Google Scholar]
  50. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2002) 182–197. [CrossRef] [Google Scholar]
  51. K. Deb, R.B. Agarwal, Simulated Binary Crossover for Continuous Search Space, Complex Syst. 9 (1995) 115–148. [Google Scholar]
  52. R.T. Marler, S.A. Jasbir, The weighted sum method for multi-objective optimization: new insights, Struct. Multidiscip. Optim. 41 (2009) 853–862. [CrossRef] [Google Scholar]
  53. A. Messac, et al., Ability of Objective Functions to Generate Points on Nonconvex Pareto Frontiers, AIAA J. 38 (2000) 1084–1091. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.