Open Access
Mechanics & Industry
Volume 19, Number 6, 2018
Article Number 606
Number of page(s) 12
Published online 08 February 2019
  1. R. Riedel, Handbook of ceramic hard materials, Wiley-VCH Verlag GmbH, Weinheim, Germany, 2000 [CrossRef] [Google Scholar]
  2. L.N. López de Lacalle, A. Lamikiz, Machine tools for high performance machining, Springer, Berlin, 2009 [CrossRef] [Google Scholar]
  3. E.S. Sotova, A.A. Vereshchaka, A.S. Vereshchaka, Ceramic cutting tools, MSTU “STANKIN”, Moscow, 2013 (in Russian) [Google Scholar]
  4. E. Brinksmeier, S. Bartsch, Ceramiс tools − material and load types determine wear mechanisms, Ann. CIRP 37 (1988) 97–100 [CrossRef] [Google Scholar]
  5. A.K.M.N. Amin, U.A.K.B. Mohamad, M.D. Arif, Implementation of magnetic damping to reduce chatter amplitude and tool wear during turning of stainless steel AISI 304, Appl. Mech. Mater. 607 (2014) 171–175 [CrossRef] [Google Scholar]
  6. A.K.M.N. Amin, U.A.K.B. Mohamad, M.D. Arif, A.G.B.A. Muthalif, Comparison vibration amplitude for magnetic damping in turning of stainless steel AISI 304, Appl. Mech. Mater. 394 (2013) 251–255 [CrossRef] [Google Scholar]
  7. G. Aguirre, M. Gorostiaga, T. Porchez, J. Muñoa, Self-tuning semi-active tuned-mass damper for machine tool chatter suppression, in: Proceedings of the International Conference on Noise and Vibration Engineering, 2012, pp. 109–123 [Google Scholar]
  8. Y. Yang, J. Muñoa, Y. Altintas, Optimization of multiple tuned mass dampers to suppress machine tool chatter, Int. J. Mach. Tools Manuf. 50 (2010) 834–842 [CrossRef] [Google Scholar]
  9. M. Martins da Silva, G.S. Venter, P.S. Varoto, R.T. Coelho, Experimental results on chatter reduction in turning through embedded piezoelectric material and passive shunt circuits, Mechatronics 29 (2015) 78–85 [CrossRef] [Google Scholar]
  10. S. Murakami, Mechanical modeling of material damage, Appl. Mech. 55 (1988) 280–286 [CrossRef] [Google Scholar]
  11. R. Dornhöfer, Feindrehen von unlegierten Kohlenstoffstäh lenmit Keramik- und Hartmetallwerkzeugen, Freiflächenver schleiß und Oberflächengüte, Dissertation, TH Braunschweig, 1961 (in German) [Google Scholar]
  12. Ye. Ya. Litovskiy, F.S. Katan, S.L. Bondarenko, Changes in the structure and thermal properties of quartz ceramics in the process of rapid heating, Ogneupory 11 (1986) 42–46 (in Russian) [Google Scholar]
  13. S.N. Grigoriev, A.A. Vereschaka, A.S. Vereschaka, A.A. Kutin, Cutting tools made of layered composite ceramics with nanoscale multilayered coatings, Procedia CIRP 1 (2012) 318–323 [Google Scholar]
  14. A.S. Vereschaka, S.N. Grigoriev, E.S. Sotova, A.A. Vereschaka, Improving the efficiency of the cutting tools made of mixed ceramics by applying modifying nano-scale multilayered coatings, Adv. Mater. Res. 712–715 (2013) 391–394 [CrossRef] [Google Scholar]
  15. A.S. Vereschaka, S.N. Grigoriev, V.P. Tabakov, E.S. Sotova, A.A. Vereschaka, M. Yu. Kulikov, Improving the efficiency of the cutting tool made of ceramic when machining hardened steel by applying nano-dispersed multi-layered coatings, Key Eng. Mater. 581 (2014) 68–73 [Google Scholar]
  16. A.A. Vereshchaka, E.S. Sotova, A.D. Batako, M.I. Sedykh, A.S. Vereshchaka, A study of the cutting properties and wear mechanism of ceramic edge tools with nanostructure multilayer composite coatings, J. Friction Wear 35 (2014) 483–488 [CrossRef] [Google Scholar]
  17. A.A. Vereshchaka, A.D. Batako, E.S. Sotova, A.S. Vereshchaka, Nanostructured multilayer composite coatings on ceramic cutting tools for finishing treatment of high-hardness quenched steels, Metal Sci. Heat Treat. 57 (2016) 614–621 [CrossRef] [Google Scholar]
  18. A. Vereschaka, J. Prilukova, B. Mokritskii, A. Vereschaka, N. Sitnikov, Specifics of application of cutting ceramics with functional coating in turning of high-strength materials, Mater. Sci. Forum 857 (2016) 221–227 [CrossRef] [Google Scholar]
  19. A.G. Evans, Ceramics and ceramic composites as high-temperature structural materials: challenges and opportunities, in: R.T. Cahn , M. McLean, A. Evans (Eds.), High-Temperature Structural Materials, Springer, Berlin, 1996 [Google Scholar]
  20. K. Weinert, I. Inasaki, J.W. Sutherland, T. Wakabayashi, Dry machining and minimum quantity lubrication, Ann. CIRP 53 (2004) 511–537 [Google Scholar]
  21. J. Schmidt, Mechanische und thermische Wirkungen beim Drehen gehärteter Stähle, Dissertation, Universität Hannover, 1999 (in German) [Google Scholar]
  22. S. Seguy, L. Arnaud, T. Insperger, Chatter in interrupted turning with geometrical defects: an industrial case study, Int. J. Adv. Manuf. Technol. 75 (2014) 45–56 [Google Scholar]
  23. J. Elias, N.V.N. Namboothiri, Cross-recurrence plot quantification analysis of input and output signals for the detection of chatter in turning, Nonlinear Dyn. 76 (2014) 255–261 [Google Scholar]
  24. B. Karpuschewski, Sensoren zur Prozessüberwachung beim Spanen [Sensors for process monitoring in cutting], Habilitation, Universität Hannover, 2001 (in German) [Google Scholar]
  25. A.A. Vereshchaka, A.S. Vereshchaka, O. Mgaloblishvili, M.N. Morgan, A.D. Batako, Nano-scale multilayered-composite coatings for the cutting tools, Int. J. Adv. Manuf. Technol. 72 (2014) 303–317 [Google Scholar]
  26. A.A. Vereschaka, S.N. Grigoriev, N.N. Sitnikov, A. Batako, Delamination and longitudinal cracking in multi-layered composite nano-structured coatings and their influence on cutting tool life, Wear 390–391 (2017) 209–219 [Google Scholar]
  27. A.A. Vereschaka, S.N. Grigoriev, Study of cracking mechanisms in multi-layered composite nano-structured coatings, Wear 378–379 (2017) 43–57 [Google Scholar]
  28. A.O. Volkhonskii, A.A. Vereshchaka, I.V. Blinkov, A.S. Vereshchaka, A.D. Batako, Filtered cathodic vacuum arc deposition of nanolayered composite coatings for machining hard-to-cut materials, Int. J. Adv. Manuf. Technol. 84 (2016) 1647–1660 [Google Scholar]
  29. A.S. Vereschaka, A.A. Vereschaka, D.V. Sladkov, A. Yu. Aksenenko, N.N. Sitnikov, Control of structure and properties of nanostructured multilayer composite coatings applied to cutting tools as a way to improve efficiency of technological cutting operation, J. Nano Res. 37 (2016) 51–57 [CrossRef] [Google Scholar]
  30. S.N. Grigoriev, A.A. Vereschaka, S.V. Fyodorov, N.N. Sitnikov, A.D. Batako, Comparative analysis of cutting properties and nature of wear of carbide cutting tools with multi-layered nano-structured and gradient coatings produced by using various deposition methods, Int. J. Adv. Manuf. Technol. 90 (2017) 3421–3435 [Google Scholar]
  31. A.A. Vereschaka, M.A. Volosova, A. Batako, A.S. Vereschaka, N.N. Sitnikov, A.E. Seleznev, Nano-scale multi-layered coatings for improved efficiency of ceramic cutting tools, Int. J. Adv. Manuf. Technol. 90 (2017) 27–43 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.