Free Access
Issue
Mechanics & Industry
Volume 20, Number 1, 2019
Article Number 101
Number of page(s) 11
DOI https://doi.org/10.1051/meca/2018044
Published online 08 February 2019
  1. U. Krupp, Fatigue crack propagation in metals and alloys: microstructural aspects and modelling concepts, John Wiley & Sons, Inc., New York, 2007 [CrossRef] [Google Scholar]
  2. J.M. Morgan, W.W. Milligan, A 1 kHz servohydraulic fatigue testing system, in: W.O. Soboyejo, T.S. Srivatsan (Eds.), Proceedings of the Conference on High Cycle Fatigue of Structural Materials, TMS, Warrendale, PA, 1997, pp. 305–312 [Google Scholar]
  3. S. Stanzl-Tschegg, Very high cycle fatigue measuring techniques, Int. J. Fatigue 60 (2014) 2–17 [Google Scholar]
  4. T.J. George, J. Seidt, M.-H. Herman Shen, T. Nicholas, C. Cross, Development of a novel vibration-based fatigue testing methodology, Int. J. Fatigue 26 (2004) 477–486 [Google Scholar]
  5. A. Angeli, B. Cornelis, M. Troncossi, Synthesis of sine-on-random vibration profiles for accelerated life tests based on fatigue damage spectrum equivalence, Mech. Syst. Signal Process. 103 (2018) 340–351 [Google Scholar]
  6. A. Appert, C. Gautrelet, L. Khalij, R. Troian, Development of a test bench for vibratory fatigue experiments of a cantilever beam with an electrodynamic shaker, MATEC Web Conf. 165 (2018) 10007 [CrossRef] [Google Scholar]
  7. W.M. To, D.J. Ewins, A closed-loop model for single/multi-shaker modal testing, Mech. Syst. Signal Process. 5 (1991) 305–316 [Google Scholar]
  8. H.M. Gomes, D. dos Santos Gaspareto, F. de Souza Ferreira, C.A.K. Thomas, A simple closed-loop active control of electrodynamic shakers by acceleration power spectral density for environmental vibration tests, Exp. Mech. 48 (2008) 683–692 [Google Scholar]
  9. M. Bennebach, H. Rognon, O. Bardou, Fatigue of structures in mechanical vibratory environment: from mission profiling to fatigue life prediction, Procedia Eng. 66 (2013) 508–521 [Google Scholar]
  10. H. Hu, Y. Li, F. Zhao, Y. Miao, P. Xue, Q. Deng, Fatigue behavior of aluminium-stiffened plate subjected to random vibration loading, Trans. Nonferrous Metals Soc. China 24 (2014) 1331–1336 [CrossRef] [Google Scholar]
  11. M. Paulus, A. Dasgupta, E. Habtour, Life estimation model of a cantilevered beam subjected to complex random vibration, Fatigue Fract. Eng. Mater. Struct. 35 (2012) 1058–1070 [Google Scholar]
  12. M. Mrsnik, J. Slavic, M. Boltezar, Frequency-domain methods for a vibration fatigue-life estimation: application to real data, Int. J. Fatigue 47 (2013) 8–17 [Google Scholar]
  13. M. Cesnik, J. Slavic, M. Boltezar, Assessment of the fatigue parameters from random vibration testing: application to a rivet joint, Strojnivski vestnik J. Mech. Eng. 62 (2016) 471–482 [CrossRef] [Google Scholar]
  14. M. Mrsnik, J. Slavic, M. Boltezar, Multiaxial vibration fatigue − a theorical and experimental comparison, Mech. Syst. Signal Process. 76/77 (2016) 409–423 [Google Scholar]
  15. H. Rognon, T. Da Silva Botelhoa, I. Tawfiq, M. Bennebach, Fatigue sous environnement vibratoire: conception d'une éprouvette pour des essais accélérés en fatigue afin de valider une méthode de dimensionnement pour des structures réelles, Congrès Français de Mécanique, 2013 [Google Scholar]
  16. D. Zanellati, D. Benasciutti, R. Tovo, Vibration fatigue tests by tri-axis shaker: design of an innovative system for uncoupled bending/torsion loading, Procedia Struct. Integr. 8 (2018) 92–101 [CrossRef] [Google Scholar]
  17. D. Zanellati, D. Benasciutti, R. Tovo, An innovative system for uncoupled bending/torsion tests by tri-axis shaker: numerical simulations and experimental results, MATEC Web Conf. 165 (2018) 16006 [CrossRef] [Google Scholar]
  18. G. Allegri, X. Zhang, On the inverse power laws for accelerated random fatigue testing, Int. J. Fatigue 30 (2008) 67–977 [Google Scholar]
  19. L. Khalij, C. Gautrelet, A. Guillet, Fatigue curves of a low-carbon steel obtained from vibrations experiments with an electrodynamic shaker, Mater. Des. 86 (2015) 640–648 [Google Scholar]
  20. G. Murugan, K. Raghukandan, U.T.S. Pillai, B.C. Pai, K. Mahadevan, High cyclic fatigue characteristics of gravity cast AZ91 magnesium alloy subjected to transverse load, Mater. Des. 30 (2009) 2636–2641 [Google Scholar]
  21. O.S. Salawu, Detection of structural damage through changes in frequency: a review, Eng. Struct. 19 (1997) 718–723 [Google Scholar]
  22. S.M. McGuire, M.E. Fine, D. Achenbach, Crack detection by resonant frequency measurements, Metall. Mater. Trans. A 26 (1995) 1123–1127 [CrossRef] [Google Scholar]
  23. P. Lorenzino, A. Navarro, The variation of resonance frequency in fatigue tests as a tool for in-situ identification of crack initiation and propagation, and for the determination of cracked areas, Int. J. Fatigue 70 (2015) 374–382 [Google Scholar]
  24. M. Colakoglu, K.L. Jerina, Material damping in 6061-T6511 aluminium to assess fatigue damage, Fatigue Fract. Eng. Mater. Struct. 26 (2003) 79–84 [Google Scholar]
  25. F. Curà, A.E. Gallinatti, Fatigue damage identification by means of modal parameters, Procedia Eng. 10 (2011) 1697–1702 [Google Scholar]
  26. W. Xu, X. Yang, B. Zhong, Y. He, C. Tao, Failure criterion of titanium alloy irregular sheet specimens for vibration-based bending fatigue testing, Eng. Fracture Mech. 195 (2018) 44–56 [CrossRef] [Google Scholar]
  27. C. Perruchet, P. Vimont, Résistance à la fatigue des matériaux en contraintes aléatoires, 1973 [Google Scholar]
  28. Les traitements thermiques des aciers. Tba1050, Techniques de l'Ingénieur, 2004 [Google Scholar]
  29. M. Cesnik, J. Slavic, M. Boltezar, Uninterrupted and accelerated vibrational fatigue testing with simultaneous monitoring of the natural frequency and damping, J. Sound Vib. 331 (2012) 5370–5382 [Google Scholar]
  30. C.A. Walker, A.J. Waddell, D.J. Johnston, An investigation of the underlying processes, University of Strathclyde, Glasgow, SCT UK, 1994 [Google Scholar]
  31. V.A. Jairazbhoya, P. Petukhovb, J. Quc, Large deflection of thin plates in cylindrical bending: non-unique solutions, Int. J. Solids Struct. 45 (2008) 3203–3218 [Google Scholar]
  32. E. Habtour, D.P. Cole, J.C. Riddick, V. Weiss, M. Robeson, R. Sridharan, A. Dasgupta, Detection of fatigue damage precursor using a nonlinear vibration approach, Struct. Control Health Monitor. 23 (2016) 1442–1463 [CrossRef] [Google Scholar]
  33. M. Claeys, Réponses vibratoires non linéaires dans un contexte industriel: essais et simulations, PhD thesis, Ecole Centrale de Lyon, 2016 [Google Scholar]
  34. L. Pesaresi, J. Armand, C.W. Schwingschackl, L. DSalles, C. Wong, An advanced underplaunder damper modeling approach based on a microslip contact model, in: ISROMAC, 2017 [Google Scholar]
  35. H. Wentzel, M. Olsson, Mechanism of dissipation in frictional joints − influence of sharp contact edges and plastic deformation, Wear 265 (2008) 1814–1819 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.