Open Access
Issue
Mechanics & Industry
Volume 20, Number 3, 2019
Article Number 304
Number of page(s) 7
DOI https://doi.org/10.1051/meca/2019014
Published online 29 May 2019
  1. R.K. Gupta, Q. Shi, L. Dhakar, T. Wang, C.H. Heng, Ch. Lee, Broadband energy harvester using non-linear polymer spring and electromagnetic/triboelectric hybrid mechanism, Sci. Rep. 7 (2017) 41396 [CrossRef] [PubMed] [Google Scholar]
  2. J. Liu, L. Yuan, J. Lei, W. Zhu, B. Cheng, Q. Zhang, Y. Song, Ch. Chen, H. Xiao, Micro-cantilever-based fiber optic hydrophone fabricated by a femtosecond laser, Opt. Lett. 42 (2017) 2459–2462 [CrossRef] [PubMed] [Google Scholar]
  3. A.E. Ahmed, L. Trabzon, A stepwise approach for piezoresistive microcantilever biosensor optimization, World Academy of Science, Engineering and Technology, Int. J. Biomed. Biol. Eng. 11 (2017) 603 [Google Scholar]
  4. L.T. Mazzola, S. Fodor, Imaging biomolecule arrays by atomic force microscopy, Biophys. J. 68 (1995) 1653–1660 [CrossRef] [PubMed] [Google Scholar]
  5. U. Dammer, M. Hegner, D. Anselmetti, P. Wagner, M. Dreier, W. Huber, H.-J. Güntherodt, Specific antigen/antibody interactions measured by force microscopy, Biophys. J. 70 (1996) 2437–2441 [CrossRef] [PubMed] [Google Scholar]
  6. S. Adhikari, Inertial mass sensing with low Q-factor vibrating microcantilevers, J. Appl. Phys. 122 (2017) 144304 [Google Scholar]
  7. M. Okan, M. Duman, Functional polymeric nanoparticle decorated microcantilever sensor for specific detection of erythromycin, Sens. Actuators B: Chem. 256 (2018) 325–333 [CrossRef] [Google Scholar]
  8. M. Alvarez, J. Plaza, L. Villanueva, C. Dominguez, L. Lechuga, Asymmetrically coupled resonators for mass sensing, Appl. Phys. Lett. 111 (2017) 113101 [Google Scholar]
  9. J.H. Lee, K.H. Yoon, K.S. Hwang, J. Park, S. Ahn, T.S. Kim, Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein, Biosens. Bioelectron. 20 (2004) 269–275 [CrossRef] [PubMed] [Google Scholar]
  10. P.M. Kosaka, V. Pini, M. Calleja, J. Tamayo, Ultrasensitive detection of HIV-1 p24 antigen by a hybrid nanomechanical-optoplasmonic platform with potential for detecting HIV-1 at first week after infection, PloS One 12 (2017) e0171899 [CrossRef] [PubMed] [Google Scholar]
  11. F.T. Goericke, W.P. King, Modeling piezoresistive microcantilever sensor response to surface stress for biochemical sensors, IEEE Sens. J. 8 (2008) 1404–1410 [Google Scholar]
  12. A. Loui, F. Goericke, T. Ratto, J. Lee, B. Hart, W. King, The effect of piezoresistive microcantilever geometry on cantilever sensitivity during surface stress chemical sensing, Sens. Actuators A: Phys. 147 (2008) 516–521 [CrossRef] [Google Scholar]
  13. A. Salehi-Khojin, S. Bashash, N. Jalili, M. Müller, R. Berger, Nanomechanical cantilever active probes for ultrasmall mass detection, J. Appl. Phys. 105 (2009) 013506 [Google Scholar]
  14. H. Xie, J. Vitard, S. Haliyo, S. Régnier, Enhanced sensitivity of mass detection using the first torsional mode of microcantilevers, Meas. Sci. Technol. 19 (2008) 055207 [Google Scholar]
  15. S. Faegh, N. Jalili, O. Yavuzcetin, D. Nagesha, R. Kumar, S. Sridhar, A cost-effective self-sensing biosensor for detection of biological species at ultralow concentrations, J. Appl. Phys. 113 (2013) 224905 [Google Scholar]
  16. S. Faegh, N. Jalili, S. Sridhar, Ultrasensitive piezoelectric-based microcantilever biosensor: Theory and experiment, IEEE/ASME Trans. Mechatron. 20 (2015) 308 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.