Open Access
Mechanics & Industry
Volume 20, Number 3, 2019
Article Number 302
Number of page(s) 11
Published online 29 May 2019
  1. Y. Prawoto, Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson's ratio, Comput. Mater. Sci. 58 (2012) 140–153 [Google Scholar]
  2. S. Mohsenizadeh, R. Alipour, M.S. Rad, A.F. Nejad, Z. Ahmad, Crashworthiness assessment of auxetic foam-filled tube under quasi-static axial loading, Mater. Des. 88 (2015) 258–268 [Google Scholar]
  3. F. Najarian, R. Alipour, M.S. Rad, A.F. Nejad, A. Razavykia, Multi-objective optimization of converting process of auxetic foam using three different statistical methods, Measurement 119 (2018) 108–116 [CrossRef] [Google Scholar]
  4. K.E. Evans, A. Alderson, Auxetic materials: Functional materials and structures from lateral thinking!, Adv. Mater. 12 (2000) 617–628 [Google Scholar]
  5. R. Critchley, I. Corni, J.A. Wharton, F.C. Walsh, R.J. Wood, K.R. Stokes, A review of the manufacture, mechanical properties and potential applications of auxetic foams, Phys. Status Solidi (b), 250 (2013) 1963–1982 [Google Scholar]
  6. W. Yang, Z.-M. Li, W. Shi, B.-H. Xie, M.-B. Yang, Review on auxetic materials, J. Mater. Sci. 39 (2004) 3269–3279 [Google Scholar]
  7. S. Mohsenizadeh, R. Alipour, Z. Ahmad, A. Alias, Influence of auxetic foam in quasi-static axial crushing, Int. J. Mater. Res. 107 (2016) 916–924 [CrossRef] [Google Scholar]
  8. S. Mohsenizadeh, R. Alipour, A.F. Nejad, M.S. Rad, Z. Ahmad, Experimental investigation on energy absorption of auxetic foam-filled thin-walled square tubes under quasi-static loading, Procedia Manuf. 2 (2015) 331–336 [Google Scholar]
  9. T. Ting, Very large Poisson's ratio with a bounded transverse strain in anisotropic elastic materials, J. Elast. 77 (2004) 163–176 [Google Scholar]
  10. R. Lakes, Experimental microelasticity of two porous solids, Int. J. Solids Struct. 22 (1986) 55–63 [Google Scholar]
  11. M. Bianchi, F. Scarpa, C. Smith, Shape memory behaviour in auxetic foams: Mechanical properties, Acta Mater. 58 (2010) 858–865 [Google Scholar]
  12. J.N. Grima, D. Attard, R. Gatt, R.N. Cassar, A novel process for the manufacture of auxetic foams and for their re-conversion to conventional form, Adv. Eng. Mater. 11 (2009) 533–535 [Google Scholar]
  13. M. Bianchi, S. Frontoni, F. Scarpa, C. Smith, Density change during the manufacturing process of PU-PE open cell auxetic foams, Phys. Status Solidi (b), 248 (2011) 30–38 [CrossRef] [Google Scholar]
  14. S. Shilko, D. Konyok, Numerical and experimental study of auxetic closed-cell foams, Comput. Methods Sci. Technol. 10 (2004) 197–202 [CrossRef] [Google Scholar]
  15. M. Bianchi, F.L. Scarpa, C.W. Smith, Stiffness and energy dissipation in polyurethane auxetic foams, J. Mater. Sci. 43 (2008) 5851–5860 [Google Scholar]
  16. M. Bianchi, F. Scarpa, C. Smith, G.R. Whittell, Physical and thermal effects on the shape memory behaviour of auxetic open cell foams, J. Mater. Sci. 45 (2010) 341 [Google Scholar]
  17. Y.C. Wang, R. Lakes, A. Butenhoff, Influence of cell size on re-entrant transformation of negative Poisson's ratio reticulated polyurethane foams, Cell. Polym. 20 (2001) 373–385 [CrossRef] [Google Scholar]
  18. J.R. Wright, M.K. Burns, E. James, M.R. Sloan, K.E. Evans, On the design and characterisation of low-stiffness auxetic yarns and fabrics, Text. Res. J. 82 (2012) 645–654 [CrossRef] [Google Scholar]
  19. K. Evans, J. Donoghue, K. Alderson, The design, matching and manufacture of auxetic carbon fibre laminates, J. Compos. Mater. 38 95–106 (2004) [Google Scholar]
  20. K. Alderson, R. Webber, A. Kettle, K. Evans, Novel fabrication route for auxetic polyethylene. Part 1. Processing and microstructure, Polym. Eng. Sci. 45 (2005) 568–578 [CrossRef] [Google Scholar]
  21. J.N. Grima, R. Gatt, N. Ravirala, A. Alderson, K.E. Evans, Negative Poisson's ratios in cellular foam materials, Mater. Sci. Eng. A, 423 (2006) 214–218 [CrossRef] [Google Scholar]
  22. R. Blumenfeld, S.F. Edwards, Theory of strains in auxetic materials, J. Supercond. Nov. Magn. 25, 565–571 (2012) [Google Scholar]
  23. F. Scarpa, L. Ciffo, J. Yates, Dynamic properties of high structural integrity auxetic open cell foam, Smart Mater. Struct. 13 (2003) 49 [Google Scholar]
  24. L. Yang, O. Harrysson, H. West, D. Cormier, Design and characterization of orthotropic re-entrant auxetic structures made via EBM using Ti6Al4V and pure copper, in: International Solid Freeform Fabrication Symposium, 2011 [Google Scholar]
  25. F. Dos Reis, J. Ganghoffer, Equivalent mechanical properties of auxetic lattices from discrete homogenization, Computat. Mater. Sci. 51 (2012) 314–321 [CrossRef] [Google Scholar]
  26. H. Wang, Z. Lu, Z. Yang, X. Li, A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance, Compos. Struct. 208 (2019) 758–770 [Google Scholar]
  27. X. Zhao, Q. Gao, L. Wang, Q. Yu, Z. Ma, Dynamic crushing of double-arrowed auxetic structure under impact loading, Mater. Des. 160 (2018) 527–537 [Google Scholar]
  28. L. Hu, M.Z. Zhou, H. Deng, Dynamic indentation of auxetic and non-auxetic honeycombs under large deformation, Compos. Struct. 207 (2019) 323–330 [Google Scholar]
  29. S. Reid, C. Peng, Dynamic uniaxial crushing of wood, Int. J. Impact Eng. 19 (1997) 531–570 [Google Scholar]
  30. D. Ruan, G. Lu, B. Wang, T.X. Yu, In-plane dynamic crushing of honeycombs – A finite element study, Int. J. Impact Eng. 28 (2003) 161–182 [Google Scholar]
  31. X.C. Zhang, H.M. Ding, L.Q. An, X.L. Wang, Numerical investigation on dynamic crushing behavior of auxetic honeycombs with various cell-wall angles, Adv. Mech. Eng. 7 (2014) 1–12 [Google Scholar]
  32. L. Hu, F. You, T. Yu, Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs, Mater. Des. 46 (2013) 511–523 [Google Scholar]
  33. Z. Zou, S. Reid, P. Tan, S. Li, J. Harrigan, Dynamic crushing of honeycombs and features of shock fronts, Int. J. Impact Eng. 36 (2009) 165–176 [Google Scholar]
  34. L. Hu, T. Yu, Dynamic crushing strength of hexagonal honeycombs, Int. J. Impact Eng. 37 (2010) 467–474 [Google Scholar]
  35. L. Hu, T. Yu, Mechanical behavior of hexagonal honeycombs under low-velocity impact-theory and simulations, Int. J. Solids Struct. 50 (2013) 3152–3165 [Google Scholar]
  36. Z.X. Lu, Q. Liu, Z.Y. Yang, Predictions of Young's modulus and negative Poisson's ratio of auxetic foams, Phys. Status Solidi (b), 248 (2011) 167–174 [CrossRef] [Google Scholar]
  37. M.S. Rad, Y. Prawoto, Z. Ahmad, Analytical solution and finite element approach to the 3D re-entrant structures of auxetic materials, Mech. Mater. 74 (2014) 76–87 [Google Scholar]
  38. M. Carsí, A. Fernández-Vicente, O.A. Ruano, O. Sherby, Processing, microstructure, strength, and ductility relationships in ultrahigh carbon steel assessed by high strain rate torsion testing, Mater. Sci. Technol. 15 (1999) 1087–1095 [CrossRef] [Google Scholar]
  39. J.N. Grima, R. Caruana-Gauci, D. Attard, R. Gatt, Three-dimensional cellular structures with negative Poisson's ratio and negative compressibility properties, Proc. R. Soc. A 468 (2012) 3121–3138 [CrossRef] [Google Scholar]
  40. F. Scarpa, J. Yates, L. Ciffo, S. Patsias, Dynamic crushing of auxetic open-cell polyurethane foam, Proc. Insti. Mech. Eng., Part C: J. Mech. Eng. Sci. 216 (2002) 1153–1156 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.