Open Access
Issue
Mechanics & Industry
Volume 20, Number 3, 2019
Article Number 306
Number of page(s) 18
DOI https://doi.org/10.1051/meca/2019006
Published online 29 May 2019
  1. M. Xu, G.J. Chen, J. Ni, Y.H. Liu, Modeling and analysis of a semiactive power-assisted unit based on hydraulic accumulator, Adv. Mech. Eng. 5 (2013) 894576 [CrossRef] [Google Scholar]
  2. X.D. Kong, L.X. Quan, The history, current situation of accumulator's research and its vista, Mach. Tool Hydraul. 10 (2004) 4–6,19 [Google Scholar]
  3. Q.L. Zhang, W. Wu, J.B. Hu, S.H. Yuan, Research on the energy storage characteristics of diaphragm accumulator, Proceedings of 2015 International Conference on Fluid Power and Mechatronics (FPM 2015), 2015, pp. 901–905 [CrossRef] [Google Scholar]
  4. J.L. Chang, L. Liu, J.Y. Zhao, H.G. Ding, G.L. Shi, The design of impact test-bed for high-flow water medium relief valve, Adv. Mech. Eng. (2014) https://doi.org/10.1155/2014/976896 [Google Scholar]
  5. Y.K. Qiu, B.R. Li, X.Y. Fu, G. Yang J.H. Hu, Suppressing water hammer of ship steering systems with hydraulic accumulator, Proc. Inst. Mech. Eng. E J. Process Mech. Eng. 228 (2014) 136–148 [CrossRef] [Google Scholar]
  6. H. Zhang, X.X. Guo, L. Xu, S.B. Hu, Z.G. Fang, Parameters analysis of hydraulic-electrical energy regenerative absorber on suspension performance, Adv. Mech. Eng. (2014). https://doi.org/10.1155/2014/836502 [Google Scholar]
  7. J.W. Zhang, S.Z. Chen, Modelling and study of active vibration control for off-road vehicle. Veh. Syst. Dyn. 52 (2014) 581–607 [CrossRef] [Google Scholar]
  8. W. Bingbing, S. Guanglin, Y. Licheng, Modeling and analysis of the electro-hydraulic proportional valve controlled motor system supplied by variable pressure accumulator, Proceedings of the 2015 International Conference on Fluid Power and Mechatronics, 2015, pp. 1165-1170 [Google Scholar]
  9. F. Ding, X. Han, N. Zhang, Z. Luo, Characteristic analysis of pitch-resistant hydraulically interconnected suspensions for two-axle vehicles, J. Vib. Control 21 (2015) 3167–3188 [Google Scholar]
  10. D. Han, L. Xin-Hui et al., Impact of main parameters of accumulator on parallel hydraulic hybrid, J. Jilin Univ. 45 (2015) 420–428 [Google Scholar]
  11. F.A. Ansari, R. Ranjan, D.N. Korade, K.R. Jagtap, Characterization of hydraulic suspension system, on the basis of accumulator pressure values for a special purpose vehicle, Mater Today Proc. 4 (2017) 709–716 [Google Scholar]
  12. J. Zhao, N. Zhang, J.C. Ji, Steady-state response of fluid-structure interactions in hydraulic piping system of passive interconnected suspensions, Int. J. Veh. Des. 72 (2016) 305–331 [CrossRef] [Google Scholar]
  13. L. Lu, B. Yao, Energy-saving adaptive robust control of a hydraulic manipulator using five cartridge valves with an accumulator, IEEE Trans. Ind. Electron. 61 (2014) 7046–7054 [Google Scholar]
  14. T. Minav, H. Hanninen, A. Sinkkonen, L. Laurila, J. Pyrhonen, Electric or hydraulic energy recovery systems in a reach truck: a comparison, Stroj Vestn J. Mech. Eng. 60 (2014) 232–240 [CrossRef] [Google Scholar]
  15. S.Y. Lee, B.N.M. Truong, K.K. Ahn, 15th International Conference on Control, Automation and Systems, IEEE, Busan, South Korea, 2015, pp. 1941–1945 [Google Scholar]
  16. M. Xu, J. Ni, G.J. Chen, Dynamic simulation of variable-speed valve-controlled-motor drive system with a power-assisted device, Stroj Vestn J. Mech. E 60 (2014) 581–591 [CrossRef] [Google Scholar]
  17. H. Kogler, R. Scheidl, Linear motion control with a low-power hydraulic switching converter − Part I: concept, test rig, simulations, Proc. Inst. Mech. Eng. I J. Syst. Control Eng. 229 (2015) 677–684 [Google Scholar]
  18. C.H. Liu, Q.J. Yang, W. Feng, G. Bao, Maximum wave power absorption by a control strategy through combining hydraulic cylinders, Proceedings of the 2015 International Conference on Fluid Power and Mechatronics, 2015, pp. 337–343 [Google Scholar]
  19. M. Liermann, O. Samhoury, S. Atshan, Energy efficiency of pneumatic power take-off for wave energy converter, Int. J. Marine Energy 13 (2016) 62–79 [CrossRef] [Google Scholar]
  20. W. Shen, J. Jiang, X. Su, H. Reza Karimi, Control strategy analysis of the hydraulic hybrid excavator, J. Franklin Inst. 352 (2015) 541–561 [Google Scholar]
  21. P.Y. Zhao, Y.L. Chen, H. Zhou, Simulation analysis of potential energy recovery system of hydraulic hybrid excavator, Int. J. Precis. Eng. Manage. 18 (2017) 1575–1589 [CrossRef] [Google Scholar]
  22. L.P. Xia, L. Quan, L. Ge, Y.X. Hao, Energy efficiency analysis of integrated drive and energy recuperation system for hydraulic excavator boom, Energy Convers. Manage. 156 (2018) 680–687 [Google Scholar]
  23. Y. Xiao, C. Guan, X. Lai, Research on the design and control strategy for a flow-coupling-based hydraulic hybrid excavator, Proc. Inst. Mech. Eng. D J. Autom. Eng. 228 (2014) 1675–1687 [CrossRef] [Google Scholar]
  24. S.Y. Yang, Y.B. Ou, Y. Guo, XM Wu, Analysis and optimization of the working parameters of the impact mechanism of hydraulic rock drill based on a numerical simulation, Int. J. Precis. Eng. Manage. 18 (2017) 971–977 [CrossRef] [Google Scholar]
  25. H. Junke, C. Zhen, Research on lifting cylinder's pressure stability control method of active scraper, Int. Conf. Mech. Syst. Control Eng. (2017) 250–254 [Google Scholar]
  26. Q. Zhang, J.H. Fang, J.H. Wei, Y. Xiong, G. Wang, Adaptive robust motion control of a fast forging hydraulic press considering the nonlinear uncertain accumulator model, Proc. Inst. Mech. Eng. I J. Syst. Control Eng. 230 (2016) 483–497 [Google Scholar]
  27. G.Y. Chen, Y. Zhang, L. Ji, R. Hou, J.G. Chang, Study on new control system of electro-hydraulic proportional valve-control fast forging press, IEEE 11th Conference on Industrial Electronics and Applications, 2016, pp. 251–255 [Google Scholar]
  28. T. Minav, M. Pietola, D.M. Filatov, A.V. Devyatkin, J. Heikkinen, Fuzzy control of direct-driven hydraulic drive without conventional oil tank, XX IEEE International Conference on Soft Computing and Measurements, 2017, pp. 444–447 [Google Scholar]
  29. T.L. Lin, Q. Chen, H.L. Ren, Y. Zhao, C. Miao, S.J. Fu et al., Energy regeneration hydraulic system via a relief valve with energy regeneration unit, Appl. Sci. 7 (2017) 613 [CrossRef] [Google Scholar]
  30. J. Siebert, M. Wydra, M. Geimer, Efficiency improved load sensing system reduction of system inherent pressure losses, Energies 10 (2017) 941 [Google Scholar]
  31. H. Kogler, R. Scheidl, Energy efficient linear drive axis using a hydraulic switching converter, J. Dyn. Syst. Meas. Control 138 (2016) 091010 [Google Scholar]
  32. F. Yoshida, S. Iio, K. Ito, A. Kitagawa, Experimental and theoretical analysis of active charge accumulator for water hydraulics system, IEEE Access 5 (2017) 881–890 [Google Scholar]
  33. J. Valdovinos, G.P. Carman, Development of a low-voltage piezohydraulic pump for compact hydraulic systems, Smart Mater. Struct. 24 (2015) 125008 [Google Scholar]
  34. J.D. Van de Ven, Constant pressure hydraulic energy storage through a variable area piston hydraulic accumulator, Appl. Energy 105 (2013) 262–270 [Google Scholar]
  35. H.E. Merritt, Hydraulic control systems John Wiley BT & Sons, Inc. New York, 1967 [Google Scholar]
  36. X.D. Kong, L.X. Quan, J. Yao, C. Kan, S.Q. Kang, X.C. Song, Accumulator is modeled on its stressing model and experiments research, Chin. Hydraul. Pneum. 7 (2006) 31–34 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.