Open Access
Issue
Mechanics & Industry
Volume 20, Number 4, 2019
Article Number 407
Number of page(s) 6
DOI https://doi.org/10.1051/meca/2019016
Published online 11 July 2019
  1. A.C. Long, M.J. Clifford, in: Composite forming mechanisms and materials characterization chapter 1 of Composite forming technologies, A.C. Long (Ed.), Woodhead Publishing Limited, England, 2007 [Google Scholar]
  2. S. Allaoui, C. Cellard, G. Hivet, Effect of inter-ply sliding on the quality of multilayer interlock dry fabric preforms, Compos. Part A: Appl. Sci. Manuf. 68 (2015) 336–345 [CrossRef] [Google Scholar]
  3. F.N. Nezami, T. Gereke, C. Cherif, Analyses of interaction mechanisms during forming of multilayer carbon woven fabric for composite application, Compos. Part A 84 (2016) 406–416 [CrossRef] [Google Scholar]
  4. P. Wang, X. Legrand, P. Boisse, N. Hamila, D. Soulat, Experimental and numerical analyses of manufacturing process of a composite square box part: comparison between textile reinforcement forming and surface 3D weaving, Compos. Part B 78 (2015) 26–34 [CrossRef] [Google Scholar]
  5. E. Guzman-Maldonado, P. Wang, N. Hamila, P. Boisse, Experimental and numerical analysis of wrinkling during forming of multilayered, Compos. Struct. 208 (2019) 213–223 [Google Scholar]
  6. S. Bel, N. Hamila, P. Boisse, F. Dumont, Finite element model for NCF composite reinforcement preforming importance of inter-ply sliding, Compos. Part A 43 (2012) 2269–2277 [CrossRef] [Google Scholar]
  7. M.A. Khan, T. Mabrouki, E. Vidal-Sallé, P. Boisse, Numerical and experimental analyses of woven composite reinforcement forming using hypoelastic behavior application to double dome benchmark, J. Mater. Process. Technol. 210 (2010) 378–388 [CrossRef] [Google Scholar]
  8. P. Badel, E. Vidal-Sallé, P. Boisse, Computational determination of in-plane shear mechanical behaviour of textile composite reinforcement, Comput. Mater. Sci. 40 (2007) 439–448 [Google Scholar]
  9. N. Hamila, P. Boisse, Simulations of textile composite reinforcement draping using a new semi-discrete three node finite element, Compos. Part B 39 (2008) 999–1010 [CrossRef] [Google Scholar]
  10. R.M.J.S. Sidhu et al., Finite element analysis of textile composite preform stamping, Compos. Struct. 52 (2001) 483–497 [Google Scholar]
  11. S. Gatouillat, A. Bareggi, E. Vidal-Sallé, P. Boisse, Meso modelling for composite preform shaping − simulation of the loss of cohesion of the woven fibre network, Compos. Part A: Appl. Sci. Manuf. 54 (2013) 135–144 [CrossRef] [Google Scholar]
  12. P. Ouagne, D. Soulat, J. Moothoo, E. Capelle, S. Gueret, Complex shape forming of a flax woven fabric; analysis of the tow buckling and misalignment defect, Compos. Part A: Appl. Sci. Manuf. 51 (2013) 1–10 [CrossRef] [Google Scholar]
  13. S. Allaoui, G. Hivet, D. Soulat, A. Wendling, P. Ouagne, S. Chatel, Experimental preforming of highly double curved shapes with a case corner using an interlock reinforcement, Int. J. Mater. Form. 7-2 (2014) 155–165 [CrossRef] [Google Scholar]
  14. A.G. Prodromou, J. Chen, On the relationship between shear angle and wrinkling of textile composite preforms, Compos. Part A: Appl. Sci. Manuf. 28 (1997) 491–503 [CrossRef] [Google Scholar]
  15. P.B. Jacquot, P. Wang, D. Soulat, X. Legrand, Analysis of the preforming behaviour of the braided and woven flax/polyamide fabrics, J. Ind. Text. 46–3 (2016) 698–718 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.