Open Access
Issue
Mechanics & Industry
Volume 21, Number 1, 2020
Article Number 110
Number of page(s) 17
DOI https://doi.org/10.1051/meca/2019082
Published online 07 January 2020
  1. R. Thornton, T. Slatter, R. Lewis, Effects of deep cryogenic treatment on the wear development of H13A tungsten carbide inserts when machining AISI 1045 steel, Prod. Eng. 8, 355–364 (2013) [CrossRef] [Google Scholar]
  2. K. Vadivel, R. Rudramoorthy, Performance analysis of cryogenically treated coated carbide inserts, Int. J. Adv. Manuf. Technol. 42, 222–232 (2008) [Google Scholar]
  3. S.S. Gill, R. Singh, H. Singh, J. Singh, Wear behaviour of cryogenically treated tungsten carbide inserts under dry and wet turning conditions, Int. J. Mach. Tools Manuf. 49, 256–260 (2009) [CrossRef] [Google Scholar]
  4. T.V. SreeramaReddy, T. Sornakumar, M. VenkataramaReddy, R. Venkatram, Machinability of C45 steel with deep cryogenic treated tungsten carbide cutting tool inserts, Int. J. Refract. Metals Hard Mater. 27, 181–185 (2009) [Google Scholar]
  5. T.V.S. Reddy, T. Sornakumar, M.V. Reddy, R. Venkatram, A. Senthilkumar, Turning studies of deep cryogenic treated P-40 tungsten carbide cutting tool inserts − technical communication, Mach. Sci. Technol. 13, 269–281 (2009) [CrossRef] [Google Scholar]
  6. S.S. Gill, H. Singh, R. Singh, J. Singh, Flank wear and machining performance of cryogenically treated tungsten carbide inserts, Mater. Manuf. Process. 26, 1430–1441 (2011) [CrossRef] [Google Scholar]
  7. S.S. Gill, J. Singh, H. Singh, R. Singh, Investigation on wear behaviour of cryogenically treated TiAlN coated tungsten carbide inserts in turning, Int. J. Mach. Tools Manuf. 51, 25–33 (2011) [Google Scholar]
  8. M. Dogra, V.S. Sharma, A. Sachdeva, N.M. Suri, J.S. Dureja, Performance evaluation of CBN, coated carbide, cryogenically treated uncoated/coated carbide inserts in finish-turning of hardened steel, Int. J. Adv. Manuf. Technol. 57, 541–553 (2011) [Google Scholar]
  9. M.C. Kumar, P. VijayaKumar, B. Narayan, Effect of deep cryogenic treatment and double tempering on machinability and tool life of HSS tool, Int. J. Artif. Intell. Mechatron. 1, 147–150 (2013) [Google Scholar]
  10. H.-B. He, W.-Q. Han, H.-Y. Li, D.-Y. Li, J. Yang, T. Gu, T. Deng, Effect of deep cryogenic treatment on machinability and wear mechanism of TiAlN coated tools during dry turning, Int. J. Precision Eng. Manuf. 15, 655–660 (2014) [CrossRef] [Google Scholar]
  11. N.A. Özbek, A. Çiçek, M. Gülesin, O. Özbek, Investigation of the effects of cryogenic treatment applied at different holding times to cemented carbide inserts on tool wear, Int. J. Mach. Tools Manuf. 86, 34–43 (2014) [CrossRef] [Google Scholar]
  12. N.S. Kalsi, R. Sehgal, V.S. Sharma, Effect of tempering after cryogenic treatment of tungsten carbide-cobalt bounded inserts, Bull. Mater. Sci. 37, 327–335 (2014) [CrossRef] [Google Scholar]
  13. M. Strano, P. Albertelli, E. Chiappini, S. Tirelli, Wear behaviour of PVD coated and cryogenically treated tools for Ti-6Al-4V turning, Int. J. Mater. Form. 8, 601–611 (2015) [CrossRef] [Google Scholar]
  14. R.G. Deshpande, Machining C-45 steel with cryogenically treated and microwave irradiate tungsten carbide cutting tool inserts, Int. J. Innov. Res. Sci. Eng. Technol. 4, 339–345 (2015) [Google Scholar]
  15. J. Singh, P. Singh, H. Singh, Flank wear evaluation of cryogenically treated ISO K313 WC/Co inserts in dry CNC turning of 2507 super-duplex stainless steel, Int. J. Mech. Prod. Eng. 3, 30–37 (2015) [Google Scholar]
  16. S. Akıncıoğlu, H. Gökkaya, I. Uygur, The effects of cryogenic-treated carbide tools on tool wear and surface roughness of turning of Hastelloy C22 based on Taguchi method, Int. J. Adv. Manuf. Technol. 82, 303–314 (2015) [Google Scholar]
  17. N.A. Özbek, A. Çiçek, M. Gülesin, O. Özbek, Effect of cutting conditions on wear performance of cryogenically treated tungsten carbide inserts in dry turning of stainless steel, Tribol. Int. 94, 223–233 (2016) [Google Scholar]
  18. M. Dhananchezian, M. Pradeep Kumar, Cryogenic turning of the Ti–6Al–4V alloy with modified cutting tool inserts, Cryogenics 51, 34–40 (2011) [Google Scholar]
  19. D. Umbrello, F. Micari, I.S. Jawahir, The effects of cryogenic cooling on surface integrity in hard machining: a comparison with dry machining, CIRP Ann 61, 103–106 (2012) [CrossRef] [Google Scholar]
  20. S. Ravi, M.P. Kumar, Experimental investigation of cryogenic cooling in milling of AISI D3 tool steel, Mater. Manuf. Process. 27, 1017–1021 (2012) [CrossRef] [Google Scholar]
  21. Al-K.A. Ghamdi, A. Iqbal, G. Hussain, Machinability comparison of AISI 4340 and Ti-6Al-4V under cryogenic and hybrid cooling environments: a knowledge engineering approach, Proc. Inst. Mech. Eng. B J. Eng. Manuf. 229, 2144–2164 (2014) [CrossRef] [Google Scholar]
  22. A.K. Islam, M. Mia, N.R. Dhar, Effects of internal cooling by cryogenic on the machinability of hardened steel, Int. J. Adv. Manuf. Technol. 90, 11–20 (2016) [Google Scholar]
  23. M. Mia, Multi-response optimization of end milling parameters under through-tool cryogenic cooling condition, Measurement 111, 134–145 (2017) [CrossRef] [Google Scholar]
  24. M. Jamil, A.M. Khan, H. Hegab, L. Gong, M. Mia, M.K. Gupta, N. He, Effects of hybrid Al2O3-CNT nanofluids and cryogenic cooling on machining of Ti-6Al-4V, Int. J. Adv. Manuf. Technol. 102, 3895–3909 (2019) [Google Scholar]
  25. P.J. Ross, Taguchi techniques for quality engineering, 2nd edn. McGraw-Hill, New York, 1996 [Google Scholar]
  26. D. Senthilkumar, I. Rajendran, Influence of shallow and deep cryogenic treatment on tribological behavior of En 19 steel, J. Iron Steel Res. Int. 18, 53–59 (2011) [CrossRef] [Google Scholar]
  27. M.C. Shaw, Metal cutting principles, 2nd edn. Oxford University Press, New York, 2005, p. 449 [Google Scholar]
  28. A.S. More, W. Jiang, W.D. Brown, A.P. Malshe, Tool wear and machining performance of CBN-TiN coated carbide inserts and PCBN compact inserts in turning AISI 4340 hardened steel, J. Mater. Process. Technol. 180, 253–262 (2006) [CrossRef] [Google Scholar]
  29. S.R. Das, A. Panda, D. Dhupal, Analysis of surface roughness in hard turning with coated ceramic inserts: Cutting parameters effects, prediction model, cutting conditions optimization and cost analysis', Ciência e Técnica Vitivinícola: Sci. Technol. J. 32, 127–154 (2017) [Google Scholar]
  30. A. Panda, S.R. Das, D. Dhupal, Surface roughness analysis for economical feasibility study of coated ceramic tool in hard turning operation, Process Integr. Optim. Sustain. 1, 237–249 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.