Open Access
Issue
Mechanics & Industry
Volume 21, Number 1, 2020
Article Number 101
Number of page(s) 12
DOI https://doi.org/10.1051/meca/2019048
Published online 07 January 2020
  1. T.D. Le, M.T.N. Bui, K.K. Ahn, Improvement of vibration isolation performance of isolation system using negative stiffness structure, IEEE. Trans. Mechatron. 21, 1561–1571 (2016) [CrossRef] [Google Scholar]
  2. T.D. Le, K.K. Ahn, A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat, J. Sound Vib. 330, 6311–6335 (2011) [Google Scholar]
  3. X.-X. Bai et al., Integrated semi-active seat suspension for both longitudinal and vertical vibration isolation, J. Intell. Mater. Syst. Struct. 28, 1036–1049 (2017) [Google Scholar]
  4. B. Kasemi et al., Fuzzy-PID controller for semi-active vibration control using magnetorheological fluid damper, Procedia Eng. 41, 1221–1227 (2012) [Google Scholar]
  5. B. Yang, Y. Hu, H. Fang, Research on arrangement scheme of magnetic suspension isolator for multi-degree freedom vibration isolation system, J. Ind. Inf. Integr. 6, 47–55 (2017) [Google Scholar]
  6. S. Behrens, A.J. Fleming, S.O.R. Moheimani, Control orientated synthesis of electromagnetic shunt impedances for vibration isolation, IFAC Proc. 37, 301–306 (2004) [CrossRef] [Google Scholar]
  7. T. Sun, Z. Huang, D. Chen, Signal frequency-based semi-active fuzzy control for two-stage vibration isolation system, J. Sound Vib. 280, 965–981 (2005) [Google Scholar]
  8. C. Min, M. Dahlmann, T. Sattel, A concept for semi-active vibration control with a serial-stiffness-switch system, J. Sound Vib 405, 234–250 (2017) [Google Scholar]
  9. A.M. Bazinenkov, V.P. Mikhailov, Active and semi active vibration isolation systems based on magnetorheological materials, Procedia Eng. 106, 170–174 (2015) [Google Scholar]
  10. Q. Meng, et al., Research and analysis of quasi-zero-stiffness isolator with geometric nonlinear damping, Shock Vib. 2017, 1–9 (2017) [Google Scholar]
  11. D. Karnopp, Vibration control using semi-active force generators, J. Eng. Ind. 96, 619–626 (1974) [CrossRef] [Google Scholar]
  12. E. Guglielmino, K.A. Edge, A controlled friction damper for vehicle applications, Control Eng. Pract. 12, 431–443 (2004) [Google Scholar]
  13. Y. Suda, T. Shiiba, K. Hio, Study on electromagnetic damper for automobiles with nonlinear damping force characteristics, Veh. Syst. Dyn. Suppl. 41, 637–646 (2004) [Google Scholar]
  14. Y. Liu, H. Matsuhisa, H. Utsuno. Semi-active vibration isolation system with variable stiffness and damping control, J. Sound Vib. 313, 16–28 (2008) [Google Scholar]
  15. T.-H. Wu, C.-C. Lan, A wide-range variable stiffness mechanism for semi-active vibration systems, J. Sound Vib. 363, 18–32 (2016) [Google Scholar]
  16. W. Wei, Design and simulation analysis of magnetorheological elastomers with variable stiffness isolation system, Manuf. Mech. 12, 22–25 ( 2011) [Google Scholar]
  17. V. Wickramasinghe, C. Yong, D. Zimeik, Smart spring: a novel adaptive impedance control approach for active vibration suppression applications, Proc. SPIE, 5390, 359–369 (2004) [CrossRef] [Google Scholar]
  18. Z. Mei-ling, Y. Shi-feng, Y. Jing-ping, Theoretical study on electromagnetic spring in active vibration control, J. Southeast Univ. 11, 97–101 (1993) [Google Scholar]
  19. Z. Hong-tian, Z. Tian-yuan, L. Zhi-gang. Electromagnetic active vibration absorber and its characteristic experimental analysis, Sound Vib. Control 3, 37–38 (1995) [Google Scholar]
  20. R.-F. Fung, Y.-T. Liu, Dynamic model of an electromagnetic actuator for vibration control of a cantilever beam with a tip mass, J. Sound Vib. 288, 957–980 (2005) [Google Scholar]
  21. Z. Zhuo-liang, Research on design of adjustable vibration isolators, Mod. Vib. Noise Technol. 4, 137–141 (2005) [Google Scholar]
  22. T. Pranoto, K. Nagaya, Vibration suppression device using permanent-electromagnet and MRF shear damper, J. Mater. Process. Technol. 181, 235–240 (2007) [CrossRef] [Google Scholar]
  23. W. Guang-wei, M. Lv-zhong, Z. Wei, Study on a new hybrid active magnetic vibration isolation system, J. Mach. Des. 25, 49–51 (2008) [Google Scholar]
  24. D. Easu, A. Siddharthan, Theoretical and experimental analysis of a vibration isolation system using hybrid magnet, Procedia Eng. 64, 1139–1146 (2013) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.