Open Access
Issue
Mechanics & Industry
Volume 21, Number 4, 2020
Article Number 401
Number of page(s) 11
DOI https://doi.org/10.1051/meca/2020029
Published online 06 May 2020
  1. C. Baker, The flow around high speed trains, J. Wind Eng. Ind. Aerodyn. 98, 277–298 (2010) [CrossRef] [Google Scholar]
  2. C. Baker, A review of train aerodynamics Part 1-Fundamentals, Aeronaut. J. 118, 201–228 (2014) [CrossRef] [Google Scholar]
  3. M. Bocciolone, F. Cheli, R. Corradi, S. Muggiasca, G. Tomasini, Crosswind action on rail vehicles: wind tunnel experimental analyses, J. Wind Eng. Ind Aerodyn. 96, 584–610 (2008) [CrossRef] [Google Scholar]
  4. F. Cheli, F. Ripamonti, D. Rocchi, G. Tomasini, Aerodynamic behaviour investigation of the new EMUV250 train to cross wind, J. Wind Eng. Ind. Aerodyn. 98, 189–201 (2010) [CrossRef] [Google Scholar]
  5. P. Deeg, M. Jönsson, H.-J. Kaltenbach, M. Schober, M. Weise, Cross-comparison of measurement techniques for the determination of train induced aerodynamic loads on the track bed, Proceedings of the BBAA VI, Milano, Italy (2008) 20–24 [Google Scholar]
  6. P. Derkowski, S. Clark, R. Sturt, A. Keylin, C. Baker, A. Vardy, N. Wilson, High-Speed Rail Aerodynamic Assessment and Mitigation Report. U.S. Department of Transportation Federal Railroad Administration, 2015 [Google Scholar]
  7. B. Diedrichs, M. Sima, A. Orellano, H. Tengstrand, Crosswind stability of a high-speed train on a high embankment, Proc. Inst. Mech. Eng. F 221, 205–225 (2007) [CrossRef] [Google Scholar]
  8. T. Gilbert, C. Baker, A. Quinn, Gusts caused by high-speed trains in confined spaces and tunnels, J. Wind Eng. Ind. Aerodyn. 121, 39–48 (2013) [CrossRef] [Google Scholar]
  9. H. Hemida, C. Baker, G. Gao, The calculation of train slipstreams using large-eddy simulation, Proc. Inst. Mech. Eng. F 228, 25–36 (2014) [CrossRef] [Google Scholar]
  10. S. Huang, H. Hemida, M. Yang, Numerical calculation of the slipstream generated by a CRH2 high-speed train, Proc. Inst. Mech Eng. F 230, 103–116 (2016) [CrossRef] [Google Scholar]
  11. V. Sarafrazi, M.R. Talaee, CFD Simulation of High-speed Trains: Train-induced Wind Conditions on Trackside Installations, Int. J. Railway Res. 5, 49–62 (2018) [Google Scholar]
  12. A. Martínez, E. Vega, J. Gaite, J. Meseguer, Pressure measurements on real high-speed trains travelling through tunnels, in Proceedings of BBAA VI International Colloquium on Bluff Bodies Aerodynamics & Applications, Milano, Italy (2008) [Google Scholar]
  13. J. Novák, Single train passing through a tunnel, ECCOMAS CFD 2006: Proceedings of the European Conference on Computational Fluid Dynamics, Egmond aan Zee, The Netherlands. Delft University of Technology; European Community on Computational Methods in Applied Sciences (ECCOMAS), September 5–8 (2006) [Google Scholar]
  14. A. Orellano, Aerodynamics of High Speed Trains (2010) [Google Scholar]
  15. A. Quinn, M. Hayward, Full-scale aerodynamic measurements underneath a high speed train, in Proceedings of the BBAA VI, Milano, Italy (2008) 1–9 [Google Scholar]
  16. R.S. Raghunathan, H.-D. Kim, T. Setoguchi, Aerodynamics of high-speed railway train, Progr. Aerospace Sci. 38, 469–514 (2002) [CrossRef] [Google Scholar]
  17. S.-S. Ding, Q. Li, A.-Q. Tian, J. Du, J.-L. Liu, Aerodynamic design on high-speed trains, Acta Mech. Sin. 32, 215–232 (2016) [Google Scholar]
  18. D. Guo, K. Shang, Y. Zhang, G. Yang, Z. Sun, Influences of affiliated components and train length on the train wind, Acta Mech. Sin. 32, 191–205 (2016) [Google Scholar]
  19. S. Li, Z. Zheng, J. Yu, C. Qian, Dynamic simulation and safety evaluation of high-speed trains meeting in open air, Acta Mech. Sin. 32, 206–214 (2016) [Google Scholar]
  20. V. Sarafrazi, M.R. Talaee, Numerical simulation of sand transfer in wind storm using the Eulerian-Lagrangian two-phase flow model, Eur. Phys. J. E 42, 45 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
  21. M. Saat, F. Bedini-Jacobini, E. Tutumluer, C. Barkan, Identification of High-Speed Rail Ballast Flight Risk Factors and Risk Mitigation Strategies. U.S. Department of Transportation Federal Railroad Administration, 2015 [Google Scholar]
  22. H. Kwon, C. Park, An experimental study on the relationship between ballast flying phenomenon and strong wind under high speed train, in Proceedings of the World Congress on Rail Research, Montreal, QC, Canada (2006) [Google Scholar]
  23. A. Ido, S. Saitou, K. Nakade, S. Iikura, Study on under-floor flow to reduce ballast flying phenomena, in Proceedings of the World Congress on Rail Research, Seoul, South Korea. 2008 [Google Scholar]
  24. A. Quinn, M. Hayward, C. Baker, F. Schmid, J. Priest, W. Powrie, A full-scale experimental and modelling study of ballast flight under high-speed trains, Proc. Inst. Mech. Eng. F 224, 61–74 (2010) [CrossRef] [Google Scholar]
  25. B.J. Lazaro, E. Gonzalez, M. Rodriguez, Characterization and modeling of flying ballast phenomena in high-speed train lines, The ninth world congress on railway research (2010) [Google Scholar]
  26. D. Rocchi, P. Schito, G. Tomasini, S. Giappino, A. Premoli, Numerical-experimental study on flying ballast caused by high-speed trains, in Proceedings of the European and African Conference on Wind Engineering, Cambridge, England. 2013 [Google Scholar]
  27. A. Premoli, D. Rocchi, P. Schito, C. Somaschini, G. Tomasini, Ballast flight under high-speed trains: Wind tunnel full-scale experimental tests, J. Wind Eng. Ind. Aerodyn. 145, 351–361 (2015) [CrossRef] [Google Scholar]
  28. R.S. Barbosa, New method for railway track quality identification through the safety dynamic performance of instrumented railway vehicle, J. Br. Soc. Mech. Sci. Eng. 38, 2265–2275 (2016) [CrossRef] [Google Scholar]
  29. J.-D. Yau, L. Frýba, A quasi-vehicle/bridge interaction model for high speed railways, J. Mech. 31, 217–225 (2015) [CrossRef] [Google Scholar]
  30. M. Naeimi, J.A. Zakeri, M. Esmaeili, M. Mehrali, Dynamic response of sleepers in a track with uneven rail irregularities using a 3D vehicle-track model with sleeper beams, Arch. Appl. Mech. 85, 1679–1699 (2015) [CrossRef] [Google Scholar]
  31. R. Bogacz, W. Czyczuła, R. Konowrocki, Effect of periodicity of railway track and wheel-rail interaction on wheelset-track dynamics, Arch. Appl. Mech. 85, 1321–1330 (2015) [CrossRef] [Google Scholar]
  32. A. Metrikine, A. Bodare, Identification of effective properties of the railway substructure in the low-frequency range using a heavy oscillating unit on the track, Arch. Appl. Mech. 80, 959–968 (2010) [CrossRef] [Google Scholar]
  33. J. García, A. Crespo, A. Berasarte, J. Goikoetxea, Study of the flow between the train underbody and the ballast track, J. Wind Eng. Ind. Aerodyn. 99, 1089–1098 (2011) [CrossRef] [Google Scholar]
  34. IranCode301, Railway track superstructures general technical specifications (2005) [Google Scholar]
  35. G. Jing, Y. Zhou, J. Lin, J. Zhang, Ballast flying mechanism and sensitivity factors analysis, Int. J. Smart Sens. Intell. Syst. 5, 928–939 (2012) [Google Scholar]
  36. B. EN14363, Railway applications-testing for the acceptance of running characteristics of railway vehicles-testing of running behaviour and stationary tests (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.