Open Access
Mechanics & Industry
Volume 21, Number 6, 2020
Article Number 621
Number of page(s) 19
Published online 05 January 2021
  1. R.K. Edel, H.E. Winn, Observation of underwater locomotion and flipper movement of the Humpback Whale Megaptera Novaeangliae, Marine Biology 48, 279–287 (1978) [Google Scholar]
  2. L.N. Cooper, A. Berta, S.D. Dawson, J.S. Reidenberg, Evolution of hyperphalangy and digit reduction in the cetacean manus, The Anatomical Record 290, 654–672 (2007) [CrossRef] [PubMed] [Google Scholar]
  3. F.E. Fish, J.M. Battle, Hydrodynamic design of the humpback whale flipper, Journal of Morphology 225, 51–60 (1995) [CrossRef] [PubMed] [Google Scholar]
  4. E.F. Frank, W.W. Paul, M.M. Mark, E.H. Laurens, The tubercles on humpback whales' flippers: application of bio-inspired technology, Integrative and Comparative Biology 51, 203–213 (2011) [CrossRef] [PubMed] [Google Scholar]
  5. L.H. Kristy, M.K. Richard, B.D. Bassam, Performance variations of leading-edge tubercles for distinct airfoil profiles, AIAA Journal 49, 185–194 (2011) [CrossRef] [Google Scholar]
  6. P. Watts, F.E. Fish, The influence of passive, leading edge tubercles on wing performance, Proceedings of the 12th International Symposium on Unmanned Untethered Submersible Technology (UUST), 2001, UUST01, Autonomous Undersea Systems Inst., Lee, NH [Google Scholar]
  7. D. Custodio, C.W. Henoch, H. Johari, Aerodynamic characteristics of finite span wings with leading-edge protuberances, AIAA Journal 53, 1878–1893 (2015) [CrossRef] [Google Scholar]
  8. P.W. Weber, L.E. Howle, M.M. Murray, Computational evaluation of the performance of lifting surfaces with leading-edge protuberances, Journal of Aircraft 48, 591–600 (2011) [Google Scholar]
  9. H. Johari, C. Henoch, D. Custodio, A. Levshin, Effects of leading-edge protuberances on airfoil performance, AIAA Journal 45, 2634–2642 (2007) [CrossRef] [Google Scholar]
  10. A. Corsini, G. Delibra, A.G. Sheard, On the role of leading-edge bumps in the control of stall onset in axial fan blades, Journal of Fluids Engineering 135, 1–9 (2013) [Google Scholar]
  11. R. Percy Torro, J.W. Kim, A large-eddy simulation on a deep-stalled aerofoil with a wavy leading edge, Journal of Fluid Mechanics 813, 23–52 (2017) [Google Scholar]
  12. M.M. Zhang, G.F. Wang, J.Z. Xu, Aerodynamic control of low-reynolds-number airfoil with leading-edge protuberances, AIAA Journal 51, 1960–1971 (2013) [CrossRef] [Google Scholar]
  13. A, Skillen, A. Revell, A. Pinelli, U. Piomelli, J. Favier, Flow over a wing with leading-edge undulations, AIAA Journal 53, 464–472 (2015) [CrossRef] [Google Scholar]
  14. M.D. Bolzon, R.M. Kelso, M. Arjomandi, Force measurements and wake surveys of a swept tubercled wing, Journal of Aerospace Engineering 30, 1–3 (2017) [Google Scholar]
  15. Z. Wei, T.H. New, Y.D. Cui, Aerodynamic performance and surface flow structures of leading-edge tubercled tapered swept-back wings, AIAA Journal 56, 423–431 (2018) [CrossRef] [Google Scholar]
  16. M.D. Bolzon, R.M. Kelso, M. Arjomandi, Formation of vortices on a tubercled wing, and their effects on drag, Aerospace Science and Technology 56, 46–55 (2016) [Google Scholar]
  17. M.M. Murray, D.S. Miklosovic, F.E. Fish, L. Howle, Effects of leading edge tubercles on a representative whale flipper model at various sweep angles, Proceeding of Unmanned Untethered Submersible Technology (UUST), 2005, UUST05, Autonomous Undersea Systems Inst., Lee, NH [Google Scholar]
  18. P.S. Segre, J. Potvin, D.E. Cade, J. Calambokidis, J. Di Clemente, F.E. Fish, A.S. Friedlaender, W.T. Gough, S.R. Kahane-Rapport, C. Oliveira, S.E. Parks, G.S. Penry, M. Simon, A.K. Stimpert, D.N. Wiley, K.C. Bierlich, P.T. Madsen, J.A. Goldbogen, Energetic and physical limitations on the breaching performance of large whales, Elifescience 51760, 1–23 (2020) [Google Scholar]
  19. H. McMorris, Y. Kallinderis, Octree-advancing front method for generation of unstructured surface and volume meshes, AIAA Journal 35, 976–984 (1997) [CrossRef] [Google Scholar]
  20. K.L. Hansen, N. Rostamzadeh, R.M. Kelso, B.B. Dally, Evolution of stream wise vortices generated between leading edge tubercles, Journal of Fluid Mechanics 788, 730–766 (2016) [Google Scholar]
  21. N. Rostamzadeh, K.L. Hansen, R.M. Kelso, B.B. Dally, The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil's performance with undulating leading edge modification, Physics of Fluids 107101 (2014) [Google Scholar]
  22. C. Cai, Z. Zuo, S. Liu, Y. Wu, Numerical investigations of hydrodynamic performance of hydrofoils with leading edge protuberances, Advances in Mechanical Engineering 7, 1–11 (2015) [Google Scholar]
  23. V.T. Gopinathan, J. Bruce Ralphin Rose, V. Gokul, K. Kamalahasan, Numerical investigation of the effect of leading edge Tubercles at low Reynolds number, Proceedings of International Heat and Mass Transfer Conference (IHMTC), 2017, pp. 1055– 1059 [Google Scholar]
  24. A. Skillen, A. Revell, A. Pinelli, U. Piomelli, J. Favier, Flow over a wing with leading-edge undulations, AIAA Journal 53, 464–472 (2015) [CrossRef] [Google Scholar]
  25. D.S. Miklosovic, M.M. Murray, L.E. Howle, F.E. Fish, Leading edge tubercles delay stall on humpback whale flippers, Physics of Fluids 16, 39–42 (2004) [CrossRef] [Google Scholar]
  26. M.D. Bolzon, R.M. Kelso, M. Arjomandi, Parametric study of the effects of a tubercle's geometry on wing performance through the use of the lifting-line theory, 54th AIAA Aerospace Sciences Meeting, 2016, California, USA [Google Scholar]
  27. K. Bang, J. Kim, S. Lee et al., Hydrodynamic role of longitudinal dorsal ridges in a leatherback turtle swimming. Science Reports 6, 34283 (2016) [CrossRef] [Google Scholar]
  28. A.S.H. Lau, S. Haeri, J.W. Kim, The effect of wavy leading edges on aerofoil-gust interaction noise, Journal of Sound and Vibration 24, 6234–6253 (2013) [Google Scholar]
  29. M.D. Bolzon, R.M. Kelso, M. Arjomandi, Force measurements and wake surveys of a swept tubercled wing, Journal of Aerospace Engineering 30, 04016085 (2017) [Google Scholar]
  30. Z. Wei, T.H., New, L. Lian, Y.N. Zhang, Leading-edge tubercles delay flow separation for a tapered swept-back wing at very low Reynolds number, Ocean Engineering 181, 173–184 (2019) [CrossRef] [Google Scholar]
  31. B.F. Ng, T.H. New, R. Palacios, Bio-inspired leading-edge tubercles to improve fatigue life in horizontal axis wind turbine blades, Thirty fifth wind energy symposium, Texas, 1381, 2017 [Google Scholar]
  32. M.D. Bolzon, R.M. Kelso, M. Arjomandi, Tubercles and their applications, Journal of Aerospace Engineering 29, 1–10 (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.