Open Access
Mechanics & Industry
Volume 22, 2021
Article Number 28
Number of page(s) 11
Published online 12 April 2021
  1. W. Chen, Z. Ruijun, Z. Qing, Analysis of transverse vibration acceleration for a high-speed elevator with random parameter based on perturbation theory, Int. J. Acoustics Vibration 22, 218–223 (2017) [Google Scholar]
  2. B. Ji-Hu, Dynamics modeling and vibration control of high-speed elevator hoisting system, Shanghai Jiao Tong University, 2014 [Google Scholar]
  3. C. Na, H. Wei, L. Zhi-Hao, Analysis of vertical vibration reduction strategy for elevator system, Noise Vibrat. Control 37, 117–137 (2017) [Google Scholar]
  4. W. Hui, Y. Wen-Hua, S. Yan, T. Zhi-Rong, Vertical vibration modeling and experimental analysis of high speed elevator, Machinery 51, 19–22 (2013) [Google Scholar]
  5. L. Zhi-Hao, H. Wei, L. Zhe-Kun, Analysis and suppression of vertical vibration in mechanical system of traction elevator, Machinery 55, 42–44 (2017) [Google Scholar]
  6. Y. Yan-Jie, High-speed traction elevator mechanical system vibration characteristic research, Shandong Jianzhu University, Shandong, 2015 [Google Scholar]
  7. W. Li-Mei, G. Yu-Yan, L. Xue-Feng, Dynamic characteristics analysis of vertical vibration of haulage type elevator mechanical system, Mach. Des Manuf. 10, 16–18 (2007) [Google Scholar]
  8. S. Xin-Xin, Research on reliability sensitivity for the cabin and transmissionmechanism of elevators based on random parameters, Shandong Jianzhu University, Shandong, 2014 [Google Scholar]
  9. Z. Rui-Jun, S. Xin-Xin, Y. Wei-Wei, D. Ming-Xiao, Resonance reliability sensitivity for a high-speeding elevator cabin system with random parameters, J. Vibrat. Shock 34, 84–88 (2016) [Google Scholar]
  10. Z. Qing, Y. Yu-Hu, Analysis of transverse vibration acceleration of a high-speed elevator with random parameters under random excitation, Period. Polytech. Mech. Eng. 61, 153–160 (2017) [Google Scholar]
  11. L. Yao, L. Yanbin, W. Hui, H. Yaozhi, Dynamic performance analysis and kinetic parameters optimization of high-speed elevator based on VPT, J. Vibration, Measurement & Diagnosis. 35, 150–155 (2015) [Google Scholar]
  12. F. Wen-Zhou, C. Shu-Qian, Z. Feng, H. cheng, L. Wen-Bo, Resonance failure sensitivity for elevator system, J. Vibration and Shock. 34, 165–170 (2015) [Google Scholar]
  13. Z. Peng, Z. Chang-Ming, Analyses of longitudinal vibration and energetics on flexible hoisting systems with arbitrarily varying length, J. Shanghai Jiao Tong Univ. 42, 480–488 (2008) [Google Scholar]
  14. B. Ji-Hu, Z. Peng, Z. Chang-Ming, Transverse vibration of flexible hoisting rope with time-varying length, J. Mech. Sci. Technol. 28, 457–466 (2014) [Google Scholar]
  15. B. Ji-Hu, Z. Peng, Z. Chang-Ming, Dynamic analysis of flexible hoisting rope with time-varying length, Int. Appl. Mech. 51, 710–720 (2015) [Google Scholar]
  16. S. Hai-Ning, Y. Ya-Ping, Investigation on the precise integration method in structural dynamics, J. Qinghai Univ. 25, 6–10 (2007) [Google Scholar]
  17. D. Xiao-Qiang, M. De-Qing, C. Zi-Chen, Time-varying element model of high-speed traction elevator and its horizontal vibration response analysi, J. Zhejiang Univ. 43 148–152 (2009) [Google Scholar]
  18. D. Zi-Chen, Z. Huan-Jun, Z. Yu-Li, Z. Wan-Xie, On computation of dynamic properties for deploying cantilever beam based on precision integration method, J. Astron. 22 110–113, (2001) [Google Scholar]
  19. Z. Wan-Xie, Precise computation for transient analysis, Chin. J. Comput. Mech. 25, 1–6 (1995) [Google Scholar]
  20. W. Shi-Long, T. Bo, Z. Yu, Z. Jie, C. Cheng, Improved shock load model of stranded sireshelical springs based on perturbation method, J. Mech. Eng. 51, 85–90, (2015) [Google Scholar]
  21. H. Gong-Yu, L. Jing-Jing, Z. Wei-Weietc, Perturbation solutions for elasto-plastic problems of circular tunnel under unequal compression, Chin. J. Rock Mech. Eng. 33, 3639–3647 (2014) [Google Scholar]
  22. N. Ming-Tao, L. Chang-Sheng, C. Li-Yuan, Perturbation methods for structural-acoustic coupled systems with interval parameters, J. Vib. Shock 34, 194–198 (2015) [Google Scholar]
  23. Z. Yi-Min, L. Qiao-Ling, W. Chun-Bang, Probability perturbation finite element method for response analysis of multi-degree-of-freedom nonlinear vibration systems with random parameters, Chin. J. Comput. Mech. 20, 8–11 (2003) [Google Scholar]
  24. British Standard Guide, BS 6841: Measurement and evaluation of human exposure to whole-body mechanical vibration and repeated shock, BSI, London, 1987 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.