Open Access
Issue
Mechanics & Industry
Volume 22, 2021
Article Number 3
Number of page(s) 17
DOI https://doi.org/10.1051/meca/2021002
Published online 08 March 2021
  1. R. Li, W.B. Li, X.M. Wang, W.B. Li, Effects of control parameters of three-point initiation on the formation of an explosively formed projectile with fins, Shock Waves 28 , 191–204 (2018) [Google Scholar]
  2. M. Kawka, L. Olejnik, A. Rosochowski, H. Sunaga, A. Makinouchi, Simulation of wrinkling in sheet metal forming, Journal of Materials Processing Technology 109 , 283–289 (2001) [Google Scholar]
  3. A.A. Dhaiban, M.E.S. Soliman, M.G. El-Sebaie, Finite element modeling and experimental results of brass elliptic cups using a new deep drawing process through conical dies, Journal of Materials Processing Technology 214 , 828–838 (2014) [Google Scholar]
  4. S. Hatori, A. Sekiguchi, A. Özer, Conceptual design of multipurpose forming machine and experiments on force-controlled shear spinning of truncated cone, Procedia Manufacturing 15 , 1255–1262 (2018) [Google Scholar]
  5. K. Bai, J. Qin, K.-M. Lee, B. Hao, Design and chatter prediction analysis of a duplex face turning machine for manufacturing disk-like workpieces, International Journal of Machine Tools and Manufacture 140 , 12–19 (2019) [Google Scholar]
  6. R. Emami, A.A. Nia, Explosive forming of a steel cone using ALE method, Steel Research International 81 , 737–740 (2010) [Google Scholar]
  7. R. Alipour, Impulsive sheet metal forming based on standoff charge for conical geometry, Universiti Teknologi Malaysia, 2017 [Google Scholar]
  8. R. Alipour, A. Frokhi Nejad, S. Izman, M. Tamin, Computer aided design and analysis of conical forming dies subjected to blast load, Applied Mechanics and Materials 735, 50–56 (2015) [Google Scholar]
  9. S. Izman, A.F. Nejad, R. Alipour, M. Tamin, F. Najarian, Topology optimization of an asymmetric elliptical cone subjected to blast loading, Procedia Manufacturing 2 , 319–324 (2015) [Google Scholar]
  10. A.C. Anastacio, C. Braithwaite, J. Kucera, E. Schmidova, J. Pachman, Shock response of polymer-bonded copper powder, Shock Waves 30, 373–384 (2020) [Google Scholar]
  11. F. Zhang, Some issues for blast from a structural reactive material solid, Shock Waves 28 , 693–707 (2018) [Google Scholar]
  12. R. Alipour, F. Nadjarian, A. Alinaghizade, Inspection of geometrical integrity of work piece and measurement of tool wear by the use of photo digitizing method, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering 4 , 1426–1429 (2010) [Google Scholar]
  13. R. Alipour, F. Najarian, Using photo digitizing method to investigating of geometrical integrity of work piece and tool wear measurement, International Review of Mechanical Engineering 4 , 780–784 (2010) [Google Scholar]
  14. P. Shailesh, K. Vijaya Kumar, J. Babu, K. Srinivasa Raghavan, Evaluation of strain and strain rates at different stages of superplastic cone forming, Materials Today: Proceedings 4 , 835–841 (2017) [Google Scholar]
  15. M. Abedini, A.A. Mutalib, J. Mehrmashhadi, S.N. Raman, R. Alipour, T. Momeni, M.H. Mussa, Large deflection behavior effect in reinforced concrete columns exposed to extreme dynamic loads, Frontiers of Structural and Civil Engineering 14, 532–553 (2019) [Google Scholar]
  16. C. Bell, J. Corney, N. Zuelli, D. Savings, A state of the art review of hydroforming technology, International Journal of Material Forming 13, 789–828 (2019) [Google Scholar]
  17. A. Hassannejadasl, D.E. Green, S.F. Golovashchenko, J. Samei, C. Maris, Numerical modelling of electrohydraulic free-forming and die-forming of DP590 steel, Journal of Manufacturing Processes 16 , 391–404 (2014) [Google Scholar]
  18. Z. Chang, M. Li, J. Chen, Analytical modeling and experimental validation of the forming force in several typical incremental sheet forming processes, International Journal of Machine Tools and Manufacture 140 , 62–76 (2019) [Google Scholar]
  19. S. Peirovi, R. Alipour, A.F. Nejad, Finite element analysis of micro scale laser bending of a steel sheet metal subjected to short pulse shock wave, Procedia Manufacturing 2 , 397–401 (2015) [Google Scholar]
  20. F. Najarian, R. Alipour, M.S. Rad, A.F. Nejad, A. Razavykia, Multi-objective optimization of converting process of auxetic foam using three different statistical methods, Measurement 119 , 108–116 (2018) [Google Scholar]
  21. V. Ghizdavu, N. Marin, Explosive forming − economical technology for aerospace structures, INCAS, COMOTI and Henri Coanda Association 2 , 107–117 (2010) [Google Scholar]
  22. R. Alipour, F. Najarian, Modeling and investigation of elongation in free explosive forming of aluminum alloy plate, World Academy of Science, Engineering and Technology 76 , 490–493 (2011) [Google Scholar]
  23. R. Alipour, F. Najarian, A FEM study of explosive welding of double layer tubes, World Academy of Science, Engineering and Technology 73 , 954–956 (2011) [Google Scholar]
  24. R. Alipour, Finite element analysis of elongation in free explosive forming of aluminum alloy blanks using CEL method, International Review of Mechanical Engineering 5 , 1039–1042 (2011) [Google Scholar]
  25. D. Javabvar, R. Alipour, A. Alavinia, Numerical study of explosive forming of spherical shell considering explosive geometry Changes, in: 16th Annual (International) Conference of Iranian Society of Mechanical Engineering, Kerman, Iran, 63–69 (2008) [Google Scholar]
  26. R. Alipour, A.F. Nejad, H.N. Dezfouli, Steady state creep characteristics of a ferritic steel at elevated temperature: an experimental and numerical study, International Journal of Advanced Design and Manufacturing Technology 11, 115–129 (2018) [Google Scholar]
  27. R. Alipour, A.F. Nejad, Creep behaviour characterisation of a ferritic steel alloy based on the modified theta-projection data at an elevated temperature, International Journal of Materials Research 107 , 406–412 (2016) [Google Scholar]
  28. M.S. Rad, H. Hatami, R. Alipouri, A.F. Nejad, F. Omidinasab, Determination of energy absorption in different cellular auxetic structures, Mechanics & Industry 20 , 302 (2019) [EDP Sciences] [Google Scholar]
  29. Ra. Alipour, R. Alipour, F. Fardian, S.S.R. Koloor, M. Petrů, Performance improvement of a new proposed Savonius hydrokinetic turbine: a numerical investigation, Energy Reports 6 , 3051–3066 (2020) [Google Scholar]
  30. N. My, K. Denni, F. Najarian, R. Alipour, A.F. Nejad, Solenoid characterization on tool entrance in horizontal twist drilling process, Procedia Manufacturing 2, 1–4 (2015) [Google Scholar]
  31. D.J. Mynors, B. Zhang, Applications and capabilities of explosive forming, Journal of Materials Processing Technology 125-126 , 1–25 (2002) [Google Scholar]
  32. V. Hadavi, J. Zamani, R. Hosseini, The empirical survey on the effect of using media in explosive forming of tubular shells, World Academy of Science, Engineering and Technology 60 , 574–579 (2009) [Google Scholar]
  33. R. Zhang, M. Fujita, H. Iyama, Y. Ishigori, H. Osaka, K. Hokamoto, X.-Z. Zhao, Numerical analysis on deformation feature of the explosive die-forming processing, in: T. Abe, T. Tsuta (Eds.), Advances in Engineering Plasticity and its Applications (aepa 1996), Pergamon, Oxford, 1996, pp. 389–394 [Google Scholar]
  34. S.A.A. Akbari Mousavi, M. Riahi, A. Hagh Parast, Experimental and numerical analyses of explosive free forming, Journal of Materials Processing Technology 187–188 , 512–516 (2007) [Google Scholar]
  35. A. Farokhi Nejad, R. Alipour, M. Shokri Rad, M. Yazid Yahya, S.S. Rahimian Koloor, M. Petrů, Using finite element approach for crashworthiness assessment of a polymeric auxetic structure subjected to the axial loading, Polymers 12 , 1312–1326 (2020) [Google Scholar]
  36. V.N. Wijayathunga, D.C. Webb, Experimental evaluation and finite element simulation of explosive forming of a square cup from a brass plate assisted by a lead plug, Journal of Materials Processing Technology 172 , 139–145 (2006) [Google Scholar]
  37. H. Mehrasa, G. Liaghat, D. Javabvar, Experimental analysis and simulation of effective factors on explosive forming of spherical vessel using prefabricated four cones vessel structures, Central European Journal of Engineering 2 , 656–664 (2012) [Google Scholar]
  38. Z. Tiesheng, L. Zhensheng, G. Changji, T. Zheng, Explosive forming of spherical metal vessels without dies, Journal of Materials Processing Technology 31 , 135–145 (1992) [Google Scholar]
  39. R. Zhang, H. Iyama, M. Fujita, T.-S. Zhang, Optimum structure design method for non-die explosive forming of spherical vessel technology, Journal of Materials Processing Technology 85 , 217–219 (1999) [Google Scholar]
  40. R. Zhang, T.-S. Zhang, Non-die explosive forming of spherical pressure vessels, Journal of Materials Processing Technology 41 , 341–347 (1994) [Google Scholar]
  41. A.F. Nejad, G. Chiandussi, V. Solimine, A. Serra, Estimation of the synchronization time of a transmission system through multi body dynamic analysis, International Journal of Mechanical Engineering and Robotics Research 6 , 232–236 (2017) [Google Scholar]
  42. Ra. Alipour, R. Alipour, S.S. Rahimian Koloor, M. Petrů, S.A. Ghazanfari, On the performance of small-scale horizontal axis tidal current turbines. Part 1: one single turbine, Sustainability 12 , 5985 (2020) [Google Scholar]
  43. H.P. Tardif, The explosive forming of conical shapes by metal gathering, in: The Explosive Forming of Conical Shapes by Metal Gathering . 1958: Other Information: Orig. Receipt Date: 31-DEC-62, p. 8 [Google Scholar]
  44. F.W. Travis, W. Johnson, The explosive forming of cones, in: The 3rd International Conference of Machine Tool Design , Birmingham, 1962, pp. 341– 364 [Google Scholar]
  45. A. Farokhi Nejad, G. Chiandussi, V. Solimine, A. Serra, Study of a synchronizer mechanism through multibody dynamic analysis, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233 , 1601–1613 (2019) [Google Scholar]
  46. M. Urbánek, B. Mašek, P. Hronek, P. Nesvadba, The use of explosive energy for joining advanced high strength low alloy steels, Journal of Materials Engineering and Performance 22 , 748–752 (2013) [Google Scholar]
  47. S. Sen, I.G. Aksoy, An application of explosive metal forming in military field: the relationship between shaped charge jet formation and thickness variation along liner length of conical copper liner, Arabian Journal for Science and Engineering 38 , 3551–3562 (2013) [Google Scholar]
  48. M. Abedini, A.A. Mutalib, S.N. Raman, R. Alipour, E. Akhlaghi, Pressure-Impulse (P-I) diagrams for Reinforced Concrete (RC) structures: a review, Archives of Computational Methods in Engineering 26, 733–767 (2018) [Google Scholar]
  49. F. Najarian, R. Alipour, A. Razavykia, A.F. Nejad, Hole quality assessment in drilling process of basalt/epoxy composite laminate subjected to the magnetic field, Mechanics & Industry 20 , 620 (2019) [EDP Sciences] [Google Scholar]
  50. O.E. Kosing, B.W. Skews, An investigation of high-speed forming of circular plates in a liquid shock tube, International Journal of Impact Engineering 21 , 801–816 (1998) [Google Scholar]
  51. H. Fengman, T. Zheng, W. Ning, H. Zhiyong, Explosive forming of thin-wall semi-spherical parts, Materials Letters 45 , 133–137 (2000) [Google Scholar]
  52. R. Alipour, S. Izman, M.N. Tamin, Estimation of charge mass for high speed forming of circular plates using energy method, in: Advanced Materials Research , Trans Tech Publications Ltd. 845, 803–808 (2014) [Google Scholar]
  53. O. Gulcan, N. Gemalmayan, B. Tuc, Optimization of explosive mass in explosive forming process by using genetic algorithm, Canadian Journal on Mechanical Sciences and Engineering 1 , 1–9 (2010) [Google Scholar]
  54. N. Nariman-Zadeh, A. Darvizeh, A. Jamali, A. Moeini, Evolutionary design of generalized polynomial neural networks for modelling and prediction of explosive forming process, Journal of Materials Processing Technology 164-165 , 1561–1571 (2005) [Google Scholar]
  55. S. Balasubramaniam, S.S. Ali, E.S.B. Rao, Explosive forming of low carbon steel sheet into a stepped disc shape, Defence Science Journal 34 , 235–256 (1984) [Google Scholar]
  56. S. Itoh, Chapter 32-Shock waves in liquids, in: G. Ben-Dor, O. Igra, T.O.V. Elperin (Eds.)Handbook of Shock Waves, Academic Press Burlington, 2001 pp. 263–314 [Google Scholar]
  57. M. Fujita, Y. Ishigori, S. Nagano, N. Kimura, S. Itoh, Explosive precision of fine arts using regulated underwater shock wave, in: W.B. Lee, (Editor), Advances in Engineering Plasticity and its Applications , Elsevier, Oxford, 1993, pp. 1007–1012 [Google Scholar]
  58. R. Cole, Underwater explosions. Princeton univ. Press, Princeton, New Jersey, 1948 [Google Scholar]
  59. S. Rao, R. Vijayakumar, Underwater explosion and effect on structures, International Journal of Innovative Research and Development 1 , 207–234 (2012) [Google Scholar]
  60. C.D. Sulfredge, R.H. Morris, R.L. Sanders, Calculating the effect of surface or underwater explosions on submerged equipment and structures, in: James Chapman, Proceedings of the American Nuclear Society International Topical Meeting on Probabilistic Safety Analysis (PSA'05) , 2005 [Google Scholar]
  61. A.A. Ezra, Principles and practice of explosive metalworking, Industrial Newspapers, London, UK, 1973 [Google Scholar]
  62. W.F. Hosford, R.M. Caddell, Metal forming: mechanics and metallurgy, Cambridge University Press, Cambridge, UK, 2011 [Google Scholar]
  63. W.F. Hosford, Fundamentals of engineering plasticity, University Press, Cambridge, UK, 2013 [Google Scholar]
  64. S. Semiatin, A.I.H. Committee, Forming and forging, American Society for Metals, Geauga County, OH, USA, 1996 [Google Scholar]
  65. A. Bebb, Under-water explosion measurements from small charges at short ranges, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 244 , 153–175 (1951) [Google Scholar]
  66. J. Chakrabarty, Theory of plasticity, Butterworth-Heinemann, Oxford, UK, 2012 [Google Scholar]
  67. A.S. Khan, S. Huang, Continuum theory of plasticity, John Wiley & Sons, Hoboken, NJ, USA, 1995 [Google Scholar]
  68. W.F. Hosford, Mechanical behavior of materials, Cambridge University Press, Cambridge, UK, 2010 [Google Scholar]
  69. K. Kawata, J. Shioiri, Constitutive Relation in High/Very High Strain Rates: IUTAM Symposium Noda, Japan October 16–19, 1995, Springer Science & Business Media, Medford, MA 02155, USA, 2013 [Google Scholar]
  70. S. Mohsenizadeh, Z. Ahmad, R. Alipour, R.A. Majid, Y. Prawoto, Quasi tri‐axial method for the fabrication of optimized polyurethane auxetic foams, Physica Status Solidi (b) 256, 1800587 (2019) [Google Scholar]
  71. M.D. Theobald, G.N. Nurick, Experimental and numerical analysis of tube-core claddings under blast loads, International Journal of Impact Engineering 37 , 333–348 (2010) [Google Scholar]
  72. Chakrabarty, Applied plasticity, 2nd Ed, 88, Springer, New York City, NY, USA, 2010 [Google Scholar]
  73. G. Gray, H. Kuhn, D. Medlin, ASM Handbook, vol. 8, Mechanical Testing and Evaluation, ASM International, Materials Park, Novelty, OH 44072, USA, pp. 462, 2005 [Google Scholar]
  74. W. Johnson, Impact strength of materials, Edward Arnold, London, UK, 1972 [Google Scholar]
  75. M.A. Meyers, Dynamic behavior of materials, Wiley, Hoboken, NJ, USA, 1994 [Google Scholar]
  76. V. Boljanovic, Sheet metal forming processes and die design, Industrial press, Norwalk, CT 06854, USA, 2014 [Google Scholar]
  77. V. Miguel, A. Martínez, J. Coello, F.J. Avellaneda, A. Calatayud, A new approach for evaluating sheet metal forming based on sheet drawing test. Application to TRIP 700 steel, Journal of Materials Processing Technology 213 , 1703–1710 (2013) [Google Scholar]
  78. H. Goldstein, Classical mechanics, 2nd ed. Addison-Wesley, Boston, MA, USA, 1980 [Google Scholar]
  79. R.L. Holloman, V. Deshpande, H.N. Wadley, Impulse transfer during sand impact with a solid block, International Journal of Impact Engineering 76 , 98–117 (2015) [Google Scholar]
  80. R. Rajendran, J.M. Lee, Blast loaded plates, Marine Structures 22 , 99–127 (2009) [Google Scholar]
  81. B. Song, D. Casem, J. Kimberley, Dynamic Behavior of Materials, Volume 1: Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics, Springer Science & Business Media, Medford, MA 02155, USA, 2013 [Google Scholar]
  82. H. Tschaetsch, Metal forming practise, Springer Berlin Heidelberg, Germany, 2006 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.