Open Access
Issue
Mechanics & Industry
Volume 22, 2021
Article Number 44
Number of page(s) 20
DOI https://doi.org/10.1051/meca/2021043
Published online 29 October 2021
  1. Le parlement européen et le conseil de l'union européenne, REACh en détail | REACH INFO, service national d'assistance réglementaire REACH. https://reach-info.ineris.fr/reach_en_detail (accessed on 07/15/2019) [Google Scholar]
  2. S.L. Narasimhan, J.M. Larson, E.P. Whelan, Wear characterization of new nickel-base alloys for internal combustion engine valve seat applications, Wear 74, 213–227 (1981) [Google Scholar]
  3. D. Pierce et al., High temperature materials for heavy duty diesel engines: historical and future trends, Prog. Mater. Sci. 103, 109–179 (2019) [Google Scholar]
  4. S. Sinharoy, S.L. Narasimhan, Oxidation behavior of two nickel-base superalloys used as elevated temperature valves in spark ignited engines and diesel Exhaust Recirculation (EGR) applications, in Superalloys 2004 (Tenth International Symposium), 2004, pp. 623–626 [Google Scholar]
  5. T. Ootani, N. Yahata, A. Fujiki, A. Ehira, Impact wear characteristics of engine valve and valve seat insert materials at high temperature (impact wear tests of austenitic heat-resistant steel SUH36 against Fe-base sintered alloy using plane specimens), Wear 188, 175–184 (1995) [Google Scholar]
  6. Y.S. Wang, S. Narasimhan, J.M. Larson, J.E. Larson, G.C. Barber, The effect of operating conditions on heavy duty engine valve seat wear, Wear 201, 15–25 (1996) [Google Scholar]
  7. R. Zhao, G.C. Barber, Y.S. Wang, J.E. Larson, Wear mechanism analysis of engine exhaust valve seats with a laboratory simulator, Tribol. Trans. 40, 209–218 (1997) [Google Scholar]
  8. X. Liang, G. Strong, D. Eickmeyer, K. Myers, A new wear tester to determine valve seat insert wear resistance, SAE Technical Paper, 1999 [Google Scholar]
  9. M. Badami, F. Marino, Fatigue tests of un-HIP'ed γ-TiAl engine valves for motorcycles, Int. J. Fatigue 28, 722–732 (2006) [Google Scholar]
  10. K.J. Chun, J.S. Hong, Comparison of the wear exerted on engine valves and seat inserts under various speeds and mileages, Proc. Inst. Mech. Eng. Part J. Automob. Eng. 220, 1783–1791 (2006) [Google Scholar]
  11. L.A.B. Mascarenhas, J. de O. Gomes, A.T. Portela, C.V. Ferreira, Reducing the development life cycle of automotive valves and seat valves using a new workbench for high temperature wear testing, Proc. CIRP 29, 833–838 (2015) [Google Scholar]
  12. J. Choi, J. Lee, N. Jun, C.-S. Seok, S. Park, G. Kim, Development of Laboratory Fatigue Testing Apparatus for Automotive Vehicle Engine Valve Simulating Actual Operating Conditions, Int. J. Precis. Eng. Manuf. 20, 1241–1253 (2019) [Google Scholar]
  13. C.G. Scott, A.T. Riga, H. Hong, The erosion-corrosion of nickel-base diesel engine exhaust valves, Wear 181-183(2), 485-494, 1995 [Google Scholar]
  14. P.A. Lakshminarayanan, N. Nayak, Y. Aghav, A.D. Dani, Solving inlet valve seat wear problem in high BMEP Engines, presented to SIAT 2001 (2001) doi: 10.4271/2001-26-0024 [Google Scholar]
  15. L. Ara, G.A. De Paula et al., Investigations of Valve Recession Mechanism in Flex Fuel Engines, SAE Technical Paper (2011). Accessed on 12/13/2016, online: http://papers.sae.org/2011-36-0340/ [Google Scholar]
  16. M.I. Khan, M.A. Khan, A. Shakoor, A failure analysis of the exhaust valve from a heavy duty natural gas engine, Eng. Fail. Anal. 85, 77–88 (2018) [Google Scholar]
  17. J. Xie, Y. Zhou, M. Tian, Study on continuing airworthiness of reciprocating aeroengine about valve sticking and valve breakage, Proc. Eng. 80, 445–455 (2014) [Google Scholar]
  18. A. Rivola, M. Troncossi, G. Dalpiaz, A. Carlini, Elastodynamic analysis of the desmodromic valve train of a racing motorbike engine by means of a combined lumped/finite element model, Mech. Syst. Signal Process. 21, 735–760 (2007) [Google Scholar]
  19. L.P. Boggupalli, An approach to analyze valve train dynamics of an IC engine using software tool ‘Tycon’, Int. J. Innov. Eng. Technol. 3, 8 (2013) [Google Scholar]
  20. F. Zenklusen, A. Cardona, C.D. Luengo, F. Cavalieri, J. Risso, Numerical and experimental stress analysis of an internal combustion engine valve during the closing event, J. Automob. Eng. 228(5), 479-489 (2014) [Google Scholar]
  21. M.Y. Ali et al., Effect of valvetrain components misalignment on valve and guide interactions in automotive engines, SAE Int. J. Engines 10, 668–679 (2017) [Google Scholar]
  22. L.P. Boggupalli, Investigations on valve recession of a commercial vehicle engine, SAE Int. J. Commer. Veh. 6, 575–581 (2013) [Google Scholar]
  23. K. Goudarzi, M.H. Shojaefard, M. Fazelpour, Effect of contact pressure and frequency on contact heat transfer between exhaust valve and its seat, Int. J. Eng. 21(4), 401–408 (2008) [Google Scholar]
  24. M.I. Karamangil, A. Avci, H. Bilal, Investigation of the effect of different carbon film thickness on the exhaust valve, Heat Mass Transf. 44, 587–598 (2008) [Google Scholar]
  25. A. Hornik, D. Jędrusik, K. Wilk, Unsteady state heat flow in the exhaust valve in turbocharged Diesel engine covered by the layer of the carbon deposit, Arch. Mater. Sci. Eng. 54, 68–77 (2012) [Google Scholar]
  26. L. Witek, Failure and thermo-mechanical stress analysis of the exhaust valve of diesel engine, Eng. Fail. Anal. 66, 154–165 (2016) [Google Scholar]
  27. M. Cerdoun, S. Khalfallah, A. Beniaiche, C. Carcasci, Investigations on the heat transfer within intake and exhaust valves at various engine speeds, Int. J. Heat Mass Transf. 147, 119005 (2020) [Google Scholar]
  28. P. Forsberg, F. Gustavsson, P. Hollman, S. Jacobson, Comparison and analysis of protective tribofilms found on heavy duty exhaust valves from field service and made in a test rig, Wear 302, 1351–1359 (2013) [Google Scholar]
  29. D. Kesavan, V. Done, M.R. Sridhar, R. Billig, D. Nelias, High temperature fretting wear prediction of exhaust valve material, Tribol. Int. 100, 280–286 (2016) [Google Scholar]
  30. M. Godet, The third-body approach: a mechanical view of wear, Wear 100, 437–452 (1984) [Google Scholar]
  31. B. Geoffroy, Distribution à soupapes, Techniques de l'ingénieur, b2805 (1995) [Google Scholar]
  32. N.V. Orlandea, Multibody Systems History of ADAMS. ASME. J. Comput. Nonlinear Dynam. 11, 060301 (2016) [Google Scholar]
  33. P. Forsberg, D. Debord, S. Jacobson, Quantification of combustion valve sealing interface sliding—A novel experimental technique and simulations, Tribol. Int. 69, 150–155 (2014) [Google Scholar]
  34. R. Lewis, R.S. Dwyer-Joyce, An experimental approach to solving combustion engine valve and seat wear problems, Tribology Series, 39, 629-640 (2001) [Google Scholar]
  35. R. Lewis, R.S. Dwyer-Joyce, Wear of diesel engine inlet valves and seat inserts, Proc. Inst. Mech. Eng. Part J. Automob. Eng. 216, 205–216 (2002) [Google Scholar]
  36. C. Boher, Réponses aux sollicitations tribologiques d'oxydes métalliques et d'alliages ductiles: organisation de la déformation plastique dans les Transformées Tribologiques de Surface, conséquences sur le débit source de troisième corps, HDR, 2016 [Google Scholar]
  37. Y. Berthier, Experimental evidence for friction and wear modelling, Wear 139, 77–92 (1990) [Google Scholar]
  38. J. Rolland, A. Saulot, Y. Berthier, Experimental tribological analysis of the Swiss lever escapement, Wear 376-377, 1418–1428 (2017) [Google Scholar]
  39. A. Saulot, L. Baillet, Dynamic finite element simulations for understanding wheel-rail contact oscillatory states occurring under sliding conditions, J. Tribol. 128, 761–770 (2006) [Google Scholar]
  40. G. Colas, A. Saulot, C. Godeau, Y. Michel, Y. Berthier, Decrypting third body flows to solve dry lubrication issue − MoS2 case study under ultrahigh vacuum, Wear 305, 192–204 (2013) [Google Scholar]
  41. R. Charlery, Comportements sous sollicitations tribologiques d'un matériau énergétique: Recherche des conditions de contrôle de la sécurité de fabrication, PhD Thesis, Lyon, INSA, 2014 [Google Scholar]
  42. L. Boulmane, Application des techniques implicites-explicites de la dynamique transitoire a la simulation numerique en mise en forme des metaux, thesis, Besançon, 1994 [Google Scholar]
  43. J.O. Hallquist, G.L. Goudreau, D.J. Benson, Sliding interfaces with contact-impact in large-scale Lagrangian computations, Comput. Methods Appl. Mech. Eng. 51, 107–137 (1985) [Google Scholar]
  44. M. Pletz, W. Daves, W. Yao, W. Kubin, S. Scheriau, Multi-scale finite element modeling to describe rolling contact fatigue in a wheel-rail test rig, Tribol. Int. 80, 147–155 (2014) [Google Scholar]
  45. F. Lévesque, S. Goudreau, L. Cloutier, A. Cardou, Finite element model of the contact between a vibrating conductor and a suspension clamp, Tribol. Int. 44, 1014–1023 (2011) [Google Scholar]
  46. D. Perić, D.R.J. Owen, Computational model for 3-D contact problems with friction based on the penalty method, Int. J. Numer. Methods Eng. 35, 1289–1309 (1992) [Google Scholar]
  47. A.L. Mohd Tobi, P.H. Shipway, S.B. Leen, Finite element modelling of brittle fracture of thick coatings under normal and tangential loading, Tribol. Int. 58, 29–39 (2013) [Google Scholar]
  48. W. Ling, H.K. Stolarski, On elasto‐plastic finite element analysis of some frictional contact problems with large sliding, Eng. Comput. 14, 558–580 (1997) [Google Scholar]
  49. C. Meier, A. Popp, W.A. Wall, A finite element approach for the line-to-line contact interaction of thin beams with arbitrary orientation, Comput. Methods Appl. Mech. Eng. 308, 377–413 (2016) [Google Scholar]
  50. N.J. Carpenter, R.L. Taylor, M.G. Katona, Lagrange constraints for transient finite element surface contact, Int. J. Numer. Methods Eng. 32, 103–128 (1991) [Google Scholar]
  51. J.C. Simo, T.A. Laursen, An augmented lagrangian treatment of contact problems involving friction, Comput. Struct. 42, 97–116 (1992) [Google Scholar]
  52. M. Hirmand, M. Vahab, A.R. Khoei, An augmented Lagrangian contact formulation for frictional discontinuities with the extended finite element method, Finite Elem. Anal. Des. 107, 28–43 (2015) [Google Scholar]
  53. T.Y. Chang, A.F. Saleeb, S.C. Shyu, Finite element solutions of two-dimensional contact problems based on a consistent mixed formulation, Comput. Struct. 27, 455–466 (1987) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.