Open Access
Mechanics & Industry
Volume 24, 2023
Article Number 8
Number of page(s) 12
Published online 06 April 2023
  1. Y.C. Duan, X. Xie, T. Zou, T.T. Wang, Mechanical response of CFRP laminates subjected to low-velocity oblique impact, Appl. Compos. Mater. 29, 1105–1124 (2022) [CrossRef] [Google Scholar]
  2. A.B. Nia, A.F. Nejad, X. Li, A. Ayob, M.Y. Yahya, Energy absorption assessment of conical composite structures subjected to quasi-static loading through optimization based method, Mech. Ind. 21, 113 (2020) [CrossRef] [EDP Sciences] [Google Scholar]
  3. Z.G. Wang, X.X. Wang, K. Liu, J. Zhang, Z. Lu, Crashworthiness index of honeycomb sandwich structures under low-speed oblique impact, Int. J. Mech. Sci. 208, 106683 (2021) [CrossRef] [Google Scholar]
  4. H. Fu, M. Karkee, L. He, J.L. Duan, Q. Zhang, Bruise patterns of fresh market apples caused by fruit-to-fruit impact, Agronomy-Basel 10, 59 (2020) [CrossRef] [Google Scholar]
  5. P. Komarnicki, R. Stopa, Ł. Kuta, D. Szyjewicz, Determination of apple bruise resistance based on the surface pressure and contact area measurements under impact loads, Comput. Electron Agric. 142, 155–164 (2017) [CrossRef] [Google Scholar]
  6. Y. Ye, Y.W. Zeng, S.F. Cheng, H. Sun, X. Chen, Numerical investigation of rock sphere breakage upon oblique impact: effect of the contact friction coefficient and impact angle, Comput. Geotech. 136, 104207 (2021) [CrossRef] [Google Scholar]
  7. X.Y. Ye, D.M. Wang, X.Y. Zhang, C.F. Zhang, W. Du, X.Y. Su, G. Li, Projectile oblique impact on granular media: penetration depth and dynamic process, Granul. Matter. 23, 48 (2021) [CrossRef] [Google Scholar]
  8. J. Xie, M. Dong, S. Li, Y. Mei, Y. Shang, An experimental study of fly ash particle oblique impact with stainless surfaces, J. Aerosol. Sci. 123, 27–38 (2018) [CrossRef] [Google Scholar]
  9. A.D. Renzo, F.P.D. Maio, Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes, Chem. Eng. Sci. 59, 525–541 (2004) [CrossRef] [Google Scholar]
  10. M. Xia, X.X. Zhao, X.P. Wei, W.L. Guan, L.C. Mao, Impact of packaging materials on bruise damage in kiwifruit during free drop test, Acta Physiolog. Plant. 42, 119 (2020) [CrossRef] [Google Scholar]
  11. Y. Sasaki, T. Orikasa, N. Nakamura, K. Hayashi, T. Shiina, Lifecycle assessment of peach transportation considering trade-off between food loss and environmental impact, Int. J. Life Cycle Asses. 26, 822–837 (2021) [CrossRef] [Google Scholar]
  12. N. Maw, J.R. Barber, J.N. Fawcett, The rebound of elastic bodies in oblique impact, Mech. Res. Commun. 4, 17–22 (1977) [CrossRef] [Google Scholar]
  13. C. Thornton, Z. Ning, A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres, Powder Technol. 99, 154–162 (1998) [CrossRef] [Google Scholar]
  14. W.J. Stronge, R. James, B. Ravani, Oblique impact with friction and tangential compliance, Philos. Trans. R Soc. A 359, 2447–2465 (2001) [CrossRef] [MathSciNet] [Google Scholar]
  15. P. Müller, T. Pöschel, Oblique impact of frictionless spheres: on the limitations of hard sphere models for granular dynamics, Granul. Matter 14, 115–120 (2012) [CrossRef] [Google Scholar]
  16. M.S. Rad, H. Hatami, R. Alipouri, A.F. Nejad, F. Omidinasab, Determination of energy absorption in different cellular auxetic structures, Mech. Ind. 20, 302 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
  17. H. Dong, M.H. Moys, Experimental study of oblique impacts with initial spin, Powder Technol. 161, 22–31 (2006) [CrossRef] [Google Scholar]
  18. A. Doménech-Carbó, Independent friction-restitution approach to analyze anomalies in normal kinematic restitution in oblique impact, Mech. Res. Commun. 113, 103699 (2021) [CrossRef] [Google Scholar]
  19. R.M. Brach, Friction, restitution, and energy loss in planar collisions, J. Appl. Mech. Trans. ASME 51, 164–170 (1984) [CrossRef] [Google Scholar]
  20. S.F. Foerster, M.Y. Louge, H. Chang, K. Allia, Measurements of the collision properties of small spheres, Phys. Fluids 6, 1108–1115 (1994) [CrossRef] [Google Scholar]
  21. A. Lorenz, C. Tuozzolo, M.Y. Louge, Measurement of impact properties of small, nearly spherical particles, Exp. Mech. 37, 292–298 (1997) [CrossRef] [Google Scholar]
  22. P. Mueller, S. Antonyuk, M. Stasiak, J. Tomas, S. Heinrich, The normal and oblique impact of three types of wet granules, Granul. Matter 13, 455–463 (2011) [CrossRef] [Google Scholar]
  23. K. Yuan, K. Liu, Z.G. Wang, M.Z. Yang, An investigation on the perforation resistance of laminated CFRP beam and square plate, Int. J. Impact Eng. 157, 103967 (2021) [CrossRef] [Google Scholar]
  24. D. Wowk, T. Reyno, R. Yeung, C. Marsden, An experimental and numerical investigation of core damage size in honeycomb sandwich panels subject to low-velocity impact, Compos. Struct. 254, 112739 (2020) [CrossRef] [Google Scholar]
  25. K. Arakawa, Effect of dynamic friction on oblique impact deformation of elastic spheres, Tribol. Int. 139, 55–58 (2019) [CrossRef] [Google Scholar]
  26. R. Olsson, Engineering method for prediction of impact response and damage in sandwich panels, J. Sandw Struct. Mater 4, 3–29 (2002) [CrossRef] [Google Scholar]
  27. D. Feng, F. Aymerich, Damage prediction in composite sandwich panels subjected to low-velocity impact, Compos. Part A Appl. S 52, 12–22 (2013) [CrossRef] [Google Scholar]
  28. M.R. Brake, An analytical elastic plastic contact model with strain hardening and frictional effects for normal and oblique impacts, Int. J. Solids Struct. 62, 104–123 (2015) [CrossRef] [Google Scholar]
  29. M. Messaadi, G. Kermouche, P. Kapsa, Numerical and experimental analysis of dynamic oblique impact: effect of impact angle, Wear 332–333, 1028–1034 (2015) [CrossRef] [Google Scholar]
  30. R. Bai, J. Guo, Z. Lei, D. Liu, Y. Ma, C. Yan, Compression after impact behavior of composite foam-core sandwich panels, Compos. Struct. 225, 111181 (2019) [CrossRef] [Google Scholar]
  31. Z.G. Wang, J. Zhang, Z.D. Li, C. Shi, On the crashworthiness of bio-inspired hexagonal prismatic tubes under axial compression, Int. J. Mech. Sci. 186, 105893 (2020) [CrossRef] [Google Scholar]
  32. M. Hosseini, H. Hatami, Elastic-plastic analysis of bending moment − axial force interaction in metallic beam of T-section, J. Appl. Comput. Mech. 5, 162–173 (2019) [Google Scholar]
  33. T.N. Tran, A. Baroutaji, Q. Estrada, A. Arjunan, H. Le, N.P. Thien, Crashworthiness analysis and optimization of standard and windowed multi-cell hexagonal tubes, Struct. Multidiscip. O 63, 2191–2209 (2021) [CrossRef] [Google Scholar]
  34. M. Kotełko, M. Ferdynus, J. Jankowski, Energy absorbing effectiveness − different approaches, Acta Mech. Autom. 12, 54–59 (2018) [Google Scholar]
  35. J.W. Xiang, J.X. Du, Energy absorption characteristics of bio-inspired honeycomb structure under axial impact loading, Mat. Sci. Eng. A 696, 283–289 (2017) [CrossRef] [Google Scholar]
  36. M.A. Abd El‑baky, D.A. Hegazy, M.A. Hassan, Advanced thin-walled composite structures for energy absorption applications, Appl. Compos. Mater. 29, 1195–1233 (2022) [CrossRef] [Google Scholar]
  37. N. Jones, Energy-absorbing effectiveness factor, Int. J. Impact Eng. 37, 754–765 (2010) [CrossRef] [Google Scholar]
  38. R. Sondergaard, K. Chaney, C.E. Brennen, Measurements of solid spheres bouncing off flat plate, J. Appl. Mech. Trans. ASME 57, 694–699 (1990) [CrossRef] [Google Scholar]
  39. Q.P. Wang, Z.F. Wang, H. Wang, D.F. Li, X.K. Gao, G.Y. Xu, Experimental analysis of interfacial properties of sphere oblique impact with initial spin, J. Theor. Appl. Mech-Pol. 60, 213–225 (2022) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.