Open Access
Mechanics & Industry
Volume 24, 2023
Article Number 36
Number of page(s) 12
Published online 19 October 2023
  1. European Council, Paris Agreement on climate change, (accessed March 14, 2023) [Google Scholar]
  2. European Commission, CO2 emission performance standards for cars and vans, (accessed March 14, 2023) [Google Scholar]
  3. The European Parliament and the Council of the European Union, Regulation (EU) 2019/631 of the European Parliament and of the Council of 17 April 2019 setting CO2 emission performance standards for new passenger cars and for new light commercial vehicles, Off. J. Eur. Union L 111/13 (2019) [Google Scholar]
  4. S. Vaidyaa, P. Ambad, S. Bhosle, Industry 4.0-a glimpse, Procedia Manuf. 20, 233–238 (2018) [CrossRef] [Google Scholar]
  5. D. Brough, H. Jouhara, The aluminium industry: a review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery, Int. J. Thermofluids 1-2, 100007 (2020) [CrossRef] [Google Scholar]
  6. R. Zhao, C. Nowicki, L. Gosselin, C. Duchesne, Energy and exergy inventory in aluminum smelter from a thermal integration point-of-view, Int. J. Energy Res. 40, 1321–1338 (2016) [CrossRef] [Google Scholar]
  7. S.A.M. Ghannadpour, H.R. Ovesy, M. Nassirnia, Buckling analysis of functionally graded plates under thermal loadings using the finite strip method, Comput. Struct. 108–109, 93–99 (2012) [CrossRef] [Google Scholar]
  8. X. Zhao, Y.Y. Lee, K.M. Liew, Mechanical and thermal buckling analysis of functionally graded plates, Compos. Struct. 90, 161–171 (2009) [CrossRef] [MathSciNet] [Google Scholar]
  9. H. Wu, S. Kitipornchai, J. Yang, Thermal buckling and postbuckling of functionallygraded graphene nanocomposite plates, Mater. Des. 132, 430–431 (2017) [CrossRef] [Google Scholar]
  10. T. Van Do, D.H. Doan, N.D. Duc, T.Q. Bui, Phase-field thermal buckling analysis forcracked functionally graded composite plates considering neutral surface, Compos. Struct. 182, 542–548 (2017) [CrossRef] [Google Scholar]
  11. D. Wang, J. Hui, W. Cao, Y. Yang, Y. Wan, H. Zuo, B. Zhang, The influence of geometric imperfections on post-buckling behavior and free vibrations of a fiber-reinforced composite laminated plate under thermal loading, Compos. Struct. 306, 116568 (2022) [Google Scholar]
  12. G. Manickam, A. Bharath, A.N. Das et al., Thermal buckling behaviour of variable stiffness laminated composite plates, Mater. Today Commun. 16, 142–51 (2018) [CrossRef] [Google Scholar]
  13. Z.K. Wang, C.G. Soares, Theoretical investigation on the upheaval thermal buckling of a lined subsea pipeline, Ocean Eng. 261, 111843 (2022) [CrossRef] [Google Scholar]
  14. Z. Wang, C. Guedes Soares, Upheaval thermal buckling of functionally graded subsea pipelines, Appl. Ocean Res. 116, 102881 (2021) [CrossRef] [Google Scholar]
  15. M.J. Santer, A. Wheatley, Composite tube flexures at nanosatellite scale, AIAA 2017 -0622, Session: small satellite deployable structures,–0622 [Google Scholar]
  16. W.L. Ko, Thermal buckling analysis of rectangular panels subjected to humped temperature profile heating, NASA Dryden Flight Research Center (2004) NASA/TP-2004–212041, ( [Google Scholar]
  17. Y. Li, J. Jiang, Y. Yu, Z. Wang, Z. Xing, Q. Zhang, Thermal buckling of oil-filled fixed-roof tanks subjected to heat radiation by a burning tank, Eng. Fail. Anal. 138, 106393 (2022) [CrossRef] [Google Scholar]
  18. R.C. Jaca, L.A. Godoy, H.D. Calabro, S.N. Espinosa, Thermal post-buckling behavior of oil storage tanks under a nearby fire, Int. J. Pres. Ves. Pip. 189, 104289 (2021) [CrossRef] [Google Scholar]
  19. A. Ghorbanpour Arani, M. Ahmadi, A. Ahmadi, A. Rastgoo, H.A. Sepyani, Buckling analysis of a cylindrical shell, under neutron radiation environment, Nucl. Eng. Des. 242, 1–6 (2012) [CrossRef] [Google Scholar]
  20. H. Yang, Finite element analysis of thermal buckling in automotive clutch and brake discs, Electronic theses and dissertations, 1056 (2015) [Google Scholar]
  21. M.H. Pranta, M.S. Rabbi, S.C. Banik, M.G. Hafez, Y.M. Chu, A computational study on structural and thermal behavior of modified disk brake rotors, Alexandria Eng. J. 61, 1882–1890 (2022) [CrossRef] [Google Scholar]
  22. Materials, Design and Manufacturing for Lightweight Vehicles,. Chapter 3-Aluminum Alloys for Lightweight Automotive Structures. 2nd ed., Woodhead Publishing, 2020 [Google Scholar]
  23. European Aluminium Association, The aluminium automotive manual: materials − designation system (2002) [Google Scholar]
  24. P.J. Bolt, R.J. Werkhoven, A.H. Van den Boogaard, Effect of elevated temperatures on the drawability of aluminiumsheet components, Proceedings 4th Esaform Conference, Liege, 2001 [Google Scholar]
  25. O. Engler, Effect of precipitation state on plastic anisotropy in sheets of the age-hardenable aluminium alloys AA 6016 and AA 7021, Mater. Sci. Eng. A. 830, 142324 (2022) [CrossRef] [Google Scholar]
  26. M. Quanjin, M. Rejab, Q. Halim, M. Merzuki, M. Darus, Experimental investigation of the tensile test using digital image correlation (DIC) method, Mater. Today.: Proc. 27, 757–763 (2020) [CrossRef] [Google Scholar]
  27. M. Rund, R. Procházka, P. Konopík, J. Džugan, H. Folgar, Investigation of sample-size influence on tensile test results at different strain rates, Procedia. Eng. 114, 410–415 (2015) [CrossRef] [Google Scholar]
  28. Y.H. Wang et al., Whole field sheet-metal tensile test using digital image correlation, Exp. Tech. 34, 54–59 (2010) [CrossRef] [Google Scholar]
  29. J.S. Lyons, J. Liu, M.A. Sutton, High-temperature deformation measurements using digital image correlation, Exp. Mech. 36, 64–70 (1996) [CrossRef] [Google Scholar]
  30. L. Yu, B. Pan, Overview of high-temperature deformation measurement using digital image correlation, Exp. Mech. 61, 1121–1142 (2021) [CrossRef] [Google Scholar]
  31. M. Saga, Y. Sasaki, M. Kikuchi, Z. Yan, M. Matsuo, Effect of pre-aging temperature on the behavior in the early stage of aging at high temperature for Al-Mg-Si alloy, Mater. Sci. Forum 217–222, 821–826 (1996) [CrossRef] [Google Scholar]
  32. G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, The precipitation sequence in Al-Mg-Si alloys, Acta Mater. 46, 3893–3904 (1998) [CrossRef] [Google Scholar]
  33. G.S. Wang, K. Liu, S,L, Wang, Evolution of elevated-temperature strength and creep resistance during multi-step heat treatments in Al-Mn-Mg alloy, Materials 11, 1158 (2018) [CrossRef] [PubMed] [Google Scholar]
  34. V. Simões, H. Laurent, M. Oliveira, L. Menezes, Influence of temperature, strain-rate and aging on the mechanical behaviour of an Al-Mg-Si alloy, 22ème Congrès Français de Mécanique, Lyon, 2015 [Google Scholar]
  35. 6.2.3 Eigenvalue buckling prediction, SIMULIA, 2080/v6.14/books/usb/default.htm?startat=pt03ch06s02at02.html (accessed February 24, 2023) [Google Scholar]
  36. A. Humer, A.S. Pechstein, Exact solutions for the buckling and postbuckling of a shear-deformable cantilever subjected to a follower force, Acta Mech. 230, 3889–3907 (2019) [CrossRef] [MathSciNet] [Google Scholar]
  37. S.G.P. Castro, E.L. Jansen, Displacement-based formulation of Koiter's method: application to multi-modal post-buckling finite element analysis of plates, Thin-Walled Struct. 159, 107217 (2021) [CrossRef] [Google Scholar]
  38. 11.3.1 Introducing a geometric imperfection into a model. SIMULIA, accessed February 24, 2023) [Google Scholar]
  39. M. Shariyat, Thermal buckling analysis of rectangular composite plates with temperature-dependent properties based on a layerwise theory, Thin Walled Struct. 45, 439–452 (2007) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.