Issue |
Mécanique & Industries
Volume 12, Number 3, 2011
CFM 2011
|
|
---|---|---|
Page(s) | 205 - 208 | |
DOI | https://doi.org/10.1051/meca/2011116 | |
Published online | 20 July 2011 |
Étude expérimentale de la dynamique d’endommagement microscopique accompagnant la rupture dynamique du PMMA
Experimental study of the dynamics of microscopic damage during fracture in PMMA
1
CEA, IRAMIS, SPCSI, Grp. Systèmes Complexes &
Fracture, 91191
Gif-sur-Yvette,
France
2
Laboratoire de Tribologie et Dynamique des Systèmes, CNRS, École
Centrale Lyon, 69134
Écully Cedex,
France
3
Laboratoire « Surface du Verre et Interfaces » (SVI), UMR
CNRS/Saint-Gobain, 93303
Aubervilliers Cedex,
France
a Auteur pour correspondance :
davy.dalmas@saint-gobain.com
Reçu :
25
Avril
2011
Accepté :
23
Mai
2011
Dans les matériaux fragiles, la mécanique linéaire élastique de la rupture (MLER) prédit une énergie de fracture constante et une vitesse de fissuration limitée par la vitesse de Rayleigh (CR). Or un grand nombre d’expériences contredisent ces prédictions. Pour comprendre ce désaccord, nous avons développé un dispositif de rupture dynamique dans un matériau fragile modèle – le PMMA. Nous montrons l’existence d’une divergence de l’énergie de fracture à 0,2 CR due à une transition fragile/quasi-fragile. Nous suggérons qu’un modèle géométrique pourra aider à mieux comprendre la dynamique de propagation et d’endommagement.
Abstract
Crack propagation is the fundamental mechanism responsible for catastrophic breakdown of brittle materials, and is usually described by the linear elastic fracture mechanics theory. However, this theoretical framework is only relevant to slow crack propagation and fails at high velocities. In particular, it accounts neither for the experimentally observed maximal crack velocities, nor for the roughness of the post-mortem fracture surfaces. In order to investigate these phenomena, we have designed an experimental setup that allows studying the fracture mechanisms in a model brittle material, namely PMMA, over a wide range of velocities at small space and time scales. This apparatus has enabled us to evidence a new critical velocity beyond which crack propagation is accompanied by microscopic damage through the nucleation and growth of microcracks ahead of the front. The analysis of the morphology of the fracture surfaces suggests that a purely geometric model could account for the conic marks observed. Applying such model to real fracture surfaces might shed light on the mechanisms of microcracking damage spreading and revisit the origin of the discrepancy between theory and experiments at large fracture velocities.
Mots clés : Rupture / endommagement / verre polymérique / matériau fragile
Key words: Dynamic fracture / damage / PMMA / brittle material
© AFM, EDP Sciences 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.