Issue |
Mechanics & Industry
Volume 14, Number 6, 2013
|
|
---|---|---|
Page(s) | 447 - 451 | |
DOI | https://doi.org/10.1051/meca/2013080 | |
Published online | 23 January 2014 |
Thermal effects of CO2 capture by solid adsorbents: some approaches by IR image processing
1
Laboratoire I2M-TREFLE, UMR 5295, Esplanade des Arts et Métiers, 33405
Talence Cedex,
France
2
ISM, UMR 5255, Université Bordeaux 1, 351 cours de la libération, 33405
Talence Cedex,
France
3
Solvay-Rhodia LOF, UMR 5258, 178 avenue du Docteur Schweitzer, 33608
Pessac Cedex,
France
a Corresponding author:
jffbenev@yahoo.com.br
Received:
26
June
2013
Accepted:
19
November
2013
Thanks to infrared thermography, we have studied the mechanisms of CO2 capture by solid adsorbents (CO2 capture via gas adsorption on various types of porous substrates) to better understand the physico-chemical mechanisms that control CO2-surface interactions. In order to develop in the future an efficient process for post-combustion CO2 capture, it is necessary to quantify the energy of adsorption of the gas on the adsorbent (exothermic process). The released heat (heat of adsorption) is a key parameter for the choice of materials and for the design of capture processes. Infrared thermography is used, at first approach, to detect the temperature fields on a thin-layer of adsorbent during CO2 adsorption. An analytical heat transfer model was developed to evaluate the adsorption heat flux and to estimate, via an inverse technique, the heat of adsorption. The main originality of our method is to estimate heat losses directly from the heat generated during the adsorption process. Then, the estimated heat loss is taken for an a posteriori calculation of the adsorption heat flux. Finally, the heat of adsorption may be estimated. The interest in using infrared thermography is also its ability to quickly change the experimental setup, for example, to switch from the adsorbent thin-layer to the adsorbent bed configuration. We present the first results tempting to link the thin-layer data to the propagation speed of the thermal front in a millifluidics adsorption bed, also observed by IR thermography.
Key words: CO2adsorption / IR thermography / thermal model / heat of adsorption / inverse technique
© AFM, EDP Sciences 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.