Issue |
Mechanics & Industry
Volume 15, Number 5, 2014
|
|
---|---|---|
Page(s) | 427 - 434 | |
DOI | https://doi.org/10.1051/meca/2014045 | |
Published online | 08 August 2014 |
On the turning modeling and simulation: 2D and 3D FEM approaches
1 Department of Industrial &
Mechanical Engineering, School of Engineering, University of Management &
Technology, 54770
Lahore,
Pakistan
2 Université de Lyon, CNRS, INSA-Lyon,
LaMCoS, UMR 5259, 69621
Lyon,
France
a Corresponding author:
masadakhtar@yahoo.com
Received:
11
May
2013
Accepted:
26
May
2014
For qualitative prediction of chip morphology and quantitative prediction of burr size, 2D and 3D finite element (FE) based turning models have been developed in this paper. Coupled temperature-displacement machining simulations exploiting the capabilities of Abaqus® with a particular industrial turning insert and a newly proposed geometrical version of this insert have been performed. Limitations of 2D models in defining the chip morphologies and surface topologies have been discussed. The phenomenological findings on the Poisson burr (Side burr) formation using 3D cutting models have been highlighted. Bespoke geometry of the turning insert has been found helpful in reducing the Poisson burr formation, as it reduces the contact pressures at the edges of tool rake face-workpiece interface. Lower contact pressures serve to decrease the material flow towards workpiece edges (out of plane deformation). In contrast, higher contact pressures at tool rake face-workpiece interface lead to more material flow towards workpiece edges resulting in longer burr. Simulation results of chip morphologies and cutting forces for turning an aluminum alloy A2024-T351 have been compared with the experimental ones. Finally, it has been concluded that the newly proposed geometry of the insert not only decreases the burr but also helpful in lessening the magnitude of tool-workpiece initial impact.
Key words: Orthogonal turning / FE model / Poisson burr formation / chip morphology / A2024-T351
© AFM, EDP Sciences 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.