Issue |
Mechanics & Industry
Volume 19, Number 3, 2018
|
|
---|---|---|
Article Number | 302 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/meca/2018024 | |
Published online | 03 September 2018 |
Regular Article
Predicting model of thickness distribution and rolling force in angular rolling process based on influence function method
National Engineering Research Center of Advanced Rolling, University of Science and Technology Beijing,
Beijing
100083, PR China
* e-mail: harui_ustb@163.com
Received:
9
January
2018
Accepted:
25
April
2018
As a special rolling method, angular rolling can meet various gauge demands of customized production. Due to the asymmetry of angular rolling, the rolling forces on the two sides of the roll system are different and the thickness distribution of the plate will be complex. To accurately obtain the thickness distribution and predict the rolling force during the angular rolling process, a mathematical model based on the influence function method is developed. An experiment is also adopted to validate the results of the rolling force. The results show that the change in the total rolling force comprises three stages: increasing, stable, and decreasing. During most of the rolling time, the rolling forces on the two sides of the mill are different. Then the predicted results of the rolling force are validated by experiment. After the first pass of angular rolling, a serious wedge appears at the head and tail ends of the plate. But when the angular rolling is finished, the wedge has almost disappeared. Considering the short calculation time, this model can be applied in the actual production process for making effective shape control strategies and flexible rolling schedules to meet various gauge demands of customized production.
Key words: Aluminium alloy / influence function method / angular rolling / thickness distribution / rolling force
© AFM, EDP Sciences 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.