Open Access
Mechanics & Industry
Volume 19, Number 3, 2018
Article Number 302
Number of page(s) 8
Published online 03 September 2018
  1. P.J. Hao, A.R. He, W.Q. Sun, Formation mechanism and control methods of inhomogeneous deformation during hot rough rolling of aluminum alloy plate, Arch. Civ. Mech. Eng. 18 (2018) 245–255. DOI:10.1016/j.acme.2017.07.004 [Google Scholar]
  2. J.W. Wu, H.F. Liu, Simulated calculation of rolls' deformation during aluminum strip cold rolling, J. Plast Eng. 24 (2017) 63–68. DOI:10.3969/j.issn.1007-2012.2017.01.010 [Google Scholar]
  3. C.G. Sun, H.D. Park, S.M. Hwang, Prediction of three dimensional strip temperatures through the entire finishing mill in hot strip rolling by finite element method, Iron Steel Inst. Jpn 43 (2002) 629–635. DOI:10.2355/isijinternational.42.629 [CrossRef] [Google Scholar]
  4. H.L. Ding, N. Kanamori, T. Honma, S. Kamado, Y. Kojima, FEM analysis for hot rolling process of AM60 alloy, Trans. Nonferrous Met. Soc. China 18 (2008) 242–246. DOI:10.1016/S1003-6326(10)60210-5 [CrossRef] [Google Scholar]
  5. J. Peng, Y.J. Wang, L.P. Zhong, Y. Sun, L.F. Peng, Three dimensional thermal mechanical coupled simulation of plastic deformation and stress distribution during hot rolling of 5052 aluminum sheet, Trans. Mater. Heat Treat. 36 (2015) 209–213. DOI:10.13289/j.issn.1009-6264.2015.03.038 [Google Scholar]
  6. Y. Song, L.Z. Chen, H. Liu, Simulation of the head and tail defect forming of 3003 aluminum alloy hot rolling and process optimization, J. Plast. Eng. 23 (2016) 76–81. DOI:10.3969/j.issn.1007-2012.2016.04.012 [Google Scholar]
  7. Q.D. Zhang, X.F. Zhang, J. Wen, Theory and technology of transverse thickness deviation control for DI tinplate during tandem cold rolling, J. Mech. Eng. 49 (2013) 30–38. DOI:10.3901/JME.2013.24.030 [CrossRef] [Google Scholar]
  8. Q.D. Zhang, X.M. Sun, J. Bai, Analysis of rolls' elastic deformation on CVC 6-h mill by FEM, J. Mech. Eng. 18 (2007) 789–792. DOI:10.3321/j.issn:1004-132X.2007.07.009 [Google Scholar]
  9. X.T. Li, Z.H. Wu, F.S. Du, J.N. Sun, FEA on rolls' deformation in rolling process of 4-roll skin miller, J. Plast. Eng. 15 (2008) 126–130 [Google Scholar]
  10. Q. Lu, A.R. He, J. Shao, Q. Yang, Modelling the edge contact of work rolls in hot rolling of ultra-thin strip, J. Plast. Eng. 17 (2010) 95–99. DOI:10.3969/j.issn.1007-2012.2010.02.018 [Google Scholar]
  11. J.W. Wu, H.F. Liu, Simulated calculation of rolls' deformation during aluminum strip cold rolling, J. Plast. Eng. 24 (2017) 63–68. DOI:10.3969/j.issn.1007-2012.2017.01.010 [Google Scholar]
  12. W.Q. Sun, B. Li, J. Shao, A.R. He, Research on crown and flatness allocation strategy of hot rolling mills, Int. J. Simul. Model. 15 (2016) 327–340. DOI:10.2507/IJSIMM15(2)CO6 [CrossRef] [Google Scholar]
  13. K.N. Shohet, N.A. Townsend, Roll bending methods of crown control in four-high plate mills, J. Iron Steel Inst. 206 (1968) 1088 [Google Scholar]
  14. Z.Y. Jiang, D. Wei, A.K. Tieu, Analysis of cold rolling of ultra-thin strip, J. Mater. Process. Technol. 209 (2009) 4584–4589. DOI:10.1016/j.jmatprotec.2008.10.035 [CrossRef] [Google Scholar]
  15. Z.Y. Jiang, H.T. Zhu, A.K. Tieu, Mechanics of roll edge contact in cold rolling of thin strip, Int. J. Mech. Sci. 48 (2006) 697–706. DOI:10.1016/j.ijmecsci.2006.01.017 [CrossRef] [Google Scholar]
  16. X.G. Liang, Preset model of bending force for six-high tandem cold rolling mill, Iron Steel 49 (2014) 40–43. DOI:10.13228/j.boyuan.issn0449-749X.20140218 [Google Scholar]
  17. J.L. Bai, J.S. Wang, G.D. Wang, X.H. Liu, Analysis of roll force distribution between rolls on a six-high mill, J. Northeast. Univ. (Nat. Sci.) 26 (2005) 133–136. DOI:10.3321/j.issn:1005-3026.2005.02.009 [Google Scholar]
  18. Y.l. Liu, W.H. Lee, Mathematical model for the thin strip cold rolling and temper rolling process with the influence function method, Iron Steel Inst. Jpn. 45 (2005) 1173–1178. DOI:10.2355/isijinternational.45.1173 [CrossRef] [Google Scholar]
  19. H. Zhou, J. L. Bai, Rolling force calculation for strip cold rolling based on influence function method, Appl. Mech. Mater. 633–634 (2014) 791–794. DOI:10.4028/ [CrossRef] [Google Scholar]
  20. C.Y. He, Z.J. Jiao, X.J. Wang, Study on advanced structure with application of improved influence function method in solving roll system deformation based on material properties, Adv. Mater. Res. 700 (2013) 98–102. DOI:10.4028/ [CrossRef] [Google Scholar]
  21. J. Qin, Q. Miao, The matrix iteration method for elastic deformation of multi-roll mill based on influence function method, Eng. Mech. 30 (2013) 271–276. DOI:10.6052/j.issn.1000-4750.2012.01.0038 [Google Scholar]
  22. Q.D. Zhang, C. Dai, J. Wen, X.F. Zhang, J. Qin, Simulation and analysis on shape control behavior of 20-h Sendzimir mill, Steel Roll. 30 (2013) 1–6. DOI:10.13228/j.boyuan.issn1003-9996.2013.03.002 [Google Scholar]
  23. J.S. Chen, J. Wang, W.Q. Liu, Study on models of work roll contact for tandem cold rolling process, Steel Roll. 33 (2016) 27–33. DOI:10.13228/j.boyuan.issn.1003-9996.20150171 [Google Scholar]
  24. G.M. Liu, Y.G. Li, Q.X. Huang, X. Yang, Axial force analysis and roll contour configuration of four-high CVC mill, Math. Probl. Eng. (2018). DOI:10.1155/2018/7527402 [Google Scholar]
  25. S.Z. Chen, L.G. Peng, L. Wang, D.H. ZAHANG, Online model research for elastic deformation of 4-high cold mill, J. Cent. South Univ. (Sci. Technol.) 6 (2017) 1432–1439. DOI:10.11817/j.issn.1672-7207.2017.06.004 [Google Scholar]
  26. X.J. Chai, H.B. Li, J. Zhang, Y.Z. Zhou, W.D. Hu, P.W. Zhang, Influence of the deviation of rolled piece on its asymmetric degree of profile in hot rolling, in: 6th International Conference on Manufacturing Science and Engineering, 2015, pp. 1063–1066. DOI:10.2991/icmse-15.2015.193 [Google Scholar]
  27. X.Y. Ren, Y.K. Zheng, H. Zhou, H.M. Gao, X.L. Luo, H.G. Huang, Analysis and application of strip shape control performance of 1420 six-high UCM cold tandem mill, Heavy Mach. 5 (2016) 10–16. DOI:10.13551/j.cnki.zxjxqk.2016.05.003 [Google Scholar]
  28. W.G. Li, L.Y. Lu, C. Liu, X.H. Liu, Roll force model in consideration of slipping and sticking friction during strip rolling process, J. Cent. South Univ. (Sci. Technol.) 47 (2016) 4021–4027. DOI:10.11817/j.issn.1672-7207.2016.12.009 [Google Scholar]
  29. J. Liu, D.H. Mao, L.H. Zhan, Numerical simulation of temperature field in hot rolling process of extra-thick plate of 2124 aluminum alloy, Mater. Mech. Eng. 33 (2009) 86–89 [Google Scholar]
  30. M. Bagheripoor, H. Bisadi, Effects of rolling parameters on temperature distribution in the hot rolling of aluminum strips, Appl. Therm. Eng. 31 (2011) 1556–1565. DOI:10.1016/j.applthermaleng.2011.01.005 [CrossRef] [Google Scholar]
  31. T. Zhang, Y.X. Wu, H. Gong, W.Z. Shi, F.M. Jiang, S.S. Jiang, Analysis of temperature asymmetry of aluminum alloy thick plate during snake hot rolling, Int. J. Adv. Manuf. Technol. 87 (2016) 941–948. DOI:10.1007/s00170-016-8536-1 [CrossRef] [Google Scholar]
  32. J.X. Niu, J. Li, J.L. Sun, F.Q. Zhen, Coupled thermos-mechanical analysis for hot continuous rolling of 3104 aluminum strip, J. North Univ. China (Nat. Sci. Edition) 37 (2016) 193–197. DOI:10.3969/j.issn.1673-3193.2016.02.018 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.