Issue |
Mechanics & Industry
Volume 20, Number 6, 2019
|
|
---|---|---|
Article Number | 628 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/meca/2019071 | |
Published online | 29 November 2019 |
Regular Article
Preliminary design of centrifugal compressor using multidisciplinary optimization method
Department of Engineering Mechanics, Northwestern Polytechnical University (Chang'an Campus), P.O. BOX 16m,
Xi'an 710129, PR China
* e-mail: lileinpu@nwpu.edu.cn
Received:
27
February
2018
Accepted:
4
October
2019
Centrifugal compressor is widely used in turbochargers in which the aerodynamic performance and strength are invariable among the important design objectives. As high pressure ratio centrifugal compressor develops, the interaction between multiple disciplines should be involved in the preliminary design process. A strength prediction method was presented and the prediction error was less than 3% compared with the 3D finite element calculation. The preliminary design method was established with consideration of multidisciplinary couplings. Then, a centrifugal compressor with the lowest pressure ratio of 4.4 was designed based on the method. The optimal results showed that the aerodynamic efficiency increases by 2.245% compared with the initial design results. Finally, the 3D validation was carried out including aerodynamic analysis and strength calculation, which showed good agreement with the optimal results of the preliminary design.
Key words: Centrifugal compressor / performance prediction / strength prediction / multidisciplinary optimization / preliminary design
© AFM, EDP Sciences 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.