Open Access
Issue
Mécanique & Industries
Volume 5, Number 1, Janvier/Février 2004
Page(s) 27 - 40
DOI https://doi.org/10.1051/meca:2004004
Published online 24 February 2004
  1. E. Nicouleau-Bourles, Étude expérimentale et numérique du vieillissement d'un alliage d'aluminium. Application aux culasses automobiles, Ph.D. thesis, spécialité : sciences et génie des matériaux, École des mines de Paris, France, 1999 [Google Scholar]
  2. T. Smith, H. Maier, H. Sehitoglu, E. Fleury, J. Allison, Modelling high-temperature stress-strain behavior of cast aluminum alloys, Met. Mat. Trans. 30A (1999) 133–146 [CrossRef] [Google Scholar]
  3. H. Sehitoglu, X. Qing, T. Smith, H. Maier, J. Allison, Stress-strain response of a cast 319-t6 aluminium under thermomechanical loading, Met. Mat. Trans. 31A (2000) 139–146 [Google Scholar]
  4. E. Charkaluk, A. Bignonnet, A. Constantinescu, K. Dang-Van, Fatigue design of structures under thermomechanical loadings, Fatigue Fract. Engng. Mater. Struct. 25 (12) (2002) 1199–1206 [Google Scholar]
  5. G. Lederer, E. Charkaluk, L. Verger, A. Constantinescu, Numerical lifetime assessment of engine parts submitted to thermomechanical fatigue, application to exhaust manifold design, in: SAE Technical paper series, 2000-01-0789, 2000 [Google Scholar]
  6. J.J. Thomas, G. Perroud, A. Bignonnet, D. Monnet, Fatigue design and reliability in the automotive industry, in : G. Marquis (Ed.), Fatigue Design'98 – 3rd International Symposium on Fatigue Design (1998), pp. 1–11 [Google Scholar]
  7. D. Francois, A. Pineau, A. Zaoui, Comportement mécanique des matériaux – Vol. II, Hermès, 1994 [Google Scholar]
  8. J. Lemaitre, J.L. Chaboche, Mécanique des matériaux solides, Dunod, Paris, 1985 [Google Scholar]
  9. J. Besson, G. Cailletaud, J.L. Chaboche, S. Forest, Mécanique non linéaire des matériaux, Hermès, 2001 [Google Scholar]
  10. W. Prager, Problèmes de plasticité théorique, Dunod, Paris, 1958 [Google Scholar]
  11. P.J. Armstrong, C.O. Frederick, A mathematical representation of the multiaxial baushinger effect, Technical Report RD/B/N731, Berkeley Nuclear Laboratories, 1966 [Google Scholar]
  12. H.D. Bui, Étude de l'évolution de la frontière du domaine élastique avec écrouissage et relations de comportement élastoplastique des métaux cubiques, Ph.D. thesis, Université Paris VI, 1969 [Google Scholar]
  13. G. Cailletaud, K. Saï, Study of platic/viscoplastic models with various inelastic mechanisms, Int. J. Plasticity, 11 (8) (1995) 991–1005 [CrossRef] [Google Scholar]
  14. L.M. Kachanov, Time of the rupture process under creep conditions, Izv Akad Nauk SSR, Otd Tekn Nauk 8 (1958) 26–31 [Google Scholar]
  15. J. Lemaitre, A. Plumtree, Application of damage concepts to predict creep-fatigue failures, J. Engng. Mat. Tech. 101 (1979) 284–292 [CrossRef] [Google Scholar]
  16. J.L. Chaboche, C. Stoltz, Détermination des durées de vie des aubes de turbines à gaz, Revue Française de Mécanique, 52 (1974) 37–47 [Google Scholar]
  17. J.L. Chaboche, On some modifications of kinematic hardening to improve the description of ratcheting effects, Int. J. Plasticity, 7 (1991) 661–678 [Google Scholar]
  18. N. Ohno, J.D. Wang, Kinematic hardening rules with critical state of dynamic recovery, part I: formulation and basics features for ratcheting behaviour, Int. J. Plasticity 9 (1993) 375–390 [Google Scholar]
  19. G. Cailletaud, Modélisation mécanique d'instabilités microstructurales en viscoplasticité cyclique à température variable, Ph.D. thesis, Spécialité : mécanique, Université Paris VI, France, 1979 [Google Scholar]
  20. J.P. Sermage, J. Lemaitre, R. Desmorat, Multiaxial creep-fatigue under anisothermal conditions, Fat. Fract. Engng. Mat. Struct, 23 (2000) 241–252 [CrossRef] [Google Scholar]
  21. S.S. Manson, Behaviour of materials under conditions of thermal stresses, Technical Report TN 2933, N.A.C.A., 1953 [Google Scholar]
  22. L.F. Coffin, A study of the effects of cyclic thermal stresses on a ductile material, Trans. ASME, 53-A76 (1953) 931–950 [Google Scholar]
  23. K.N. Smith, P. Watson, T.H. Topper, A stress-strain function for the fatigue of metals, J. Mater. 5 (4) (1970) 767–778 [Google Scholar]
  24. F. Ellyin, K. Golos, Multiaxial fatigue damage criterion, J. Engng. Mat. Tech. 113, 1988 [Google Scholar]
  25. E. Charkaluk, A. Constantinescu, Energetic approach in thermomechanical fatigue for silicon molybdenum cast-iron, Materials at High Temperatures 17 (3) (2000) 373–380 [CrossRef] [Google Scholar]
  26. Y.N. Rabotnov, Creep problems in structural members, North Holland Publishing Company, 1969 [Google Scholar]
  27. J. Lemaitre, J.L. Chaboche, A non-linear model of creep-fatigue damage cumulation and interaction, Symposium IUTAM sur la mécanique des milieux et des corps viscoélastiques, Gothenburg, Suède, septembre 1974 [Google Scholar]
  28. J. Lemaitre, A course on damage mechanics, Springer-Verlag, Berlin, 1995 [Google Scholar]
  29. J. Lemaitre, A continuous damage mechanics model for ductile fracture, J. Engng. Mat. Tech. 107 (1985) 83–89 [Google Scholar]
  30. J. Lemaitre, J.P. Sermage, R. Desmorat, A two scale damage concept applied to fatigue, Int. J. Frac. 97 (1999) 67–81 [Google Scholar]
  31. J.L. Chaboche, Une loi différentielle d'endommagement de fatigue avec cumulation non linéaire, Revue Française de Mécanique (50-51) (1974) 71–82 [Google Scholar]
  32. J.L. Chaboche, La fatigue des matériaux et des structures, Hermès, 1997, pp. 617–644 [Google Scholar]
  33. S. Taira, Relationship between thermal fatigue and low-cycle fatigue at elevated temperature, in : Fatigue at Elevated Temperature – ASTM STP 520, 1973, pp. 20–101 [Google Scholar]
  34. J.L. Chaboche, F. Gallerneau, An overview of the damage approach to durability modeling at elevated temperature, Fatigue Fract. Engng. Mater. Struct. 24 (6) (2001) 405–417 [CrossRef] [Google Scholar]
  35. A. Bignonnet, Fatigue design in automotive industry, in: G. Lutjering, H. Nowack (Eds.), Fatigue'96 – 6th International Fatigue Congress, 1996, pp. 1825–1836 [Google Scholar]
  36. L. Remy, Thermal and thermal-mechanical fatigue of superalloys – a challenging goal for mechanical tests and models, in : K.T. Rie, P.D. Portella (Eds.), Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, Elsevier, 1998, pp. 119–130 [Google Scholar]
  37. L. Verger, A. Constantinescu, E. Charkaluk, Thermomechanical fatigue design of aluminium components, in : Fatigue-Temperature Interaction, 9th International Spring Meeting of the SF2M, May 2001, pp. 293–302 [Google Scholar]
  38. B. Halphen, Q.S. Nguyen, Sur les matériaux standards généralisés, J. Mécanique 14 (1) (1975) 39–631 [Google Scholar]
  39. E. Charkaluk, Dimensionnement des structures à la fatigue thermomécanique, Ph.D. thesis, spécialité : mécanique, École Polytechnique, France, 1999 [Google Scholar]
  40. L. Verger, A. Constantinescu, E. Charkaluk, On the simulation of large viscoplastic structures under anisothermal loadings, in : Murakami and Ohno (Eds.), IUTAM Creep in Structures, Kluwer, April 2000 [Google Scholar]
  41. L. Bourgeois, Contrôle optimal et problèmes inverses en plasticité, Ph.D. thesis, spécialité : mécanique, École polytechnique, France, 1998 [Google Scholar]
  42. J.C. Simo, T.J.R. Hughes, Computational inelasticity, Springer-Verlag, 1998 [Google Scholar]
  43. A. Aouameur, E. Charkaluk, Influence du modèle d'écrouissage sur la réponse cyclique anisotherme d'une structure 3d, in: CSMA (Ed.), Actes du 5e colloque national en calcul des structures, Teknea, 2001, pp. 343–350 [Google Scholar]
  44. H. Maïtournam, B. Pommier, J.J. Thomas, Détermination de la réponse asymptotique d'une structure anélastique sous chargement thermomécanique cyclique, C.R. Mécanique 330 (2002) 703–708 [CrossRef] [Google Scholar]
  45. G.R. Halford, S.S. Manson, Life prediction of thermal-mechanical fatigue using strainrange partitioning, in: Thermal Fatigue of Materials and Components – ASTM STP 612, 1976 [Google Scholar]
  46. J.L. Chaboche, H. Policella, H. Kaczmarek, Applicability of the srp method and creep-fatigue approach to the lchtf life prediction of in-100 alloy, in: réunion AGARD sur la caractérisation de la fatigue oligocyclique à chaud par la méthode de partition de l'amplitude de déformation, Aalborg, Danemark, avril 1978 [Google Scholar]
  47. R.P. Skelton, Energy criterion for high temperature low cycle fatigue, Mat. Sci. Tech. 7 (1991) 427–439 [Google Scholar]
  48. R.P. Skelton, T. Vilhelmsen, G.A. Webster, Energy criteria and cumulative damage during fatigue crack growth, Int. J. Fatigue 20 (9) (1998) 641–649 [Google Scholar]
  49. G. Marquis, D. Socie, Long-life torsion fatigue with normal mean stresses, Fat. Frac. Engng. Mat. Struct. 23 (2000) 293–300 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.