Open Access
Issue |
Mécanique & Industries
Volume 5, Number 1, Janvier/Février 2004
|
|
---|---|---|
Page(s) | 11 - 25 | |
DOI | https://doi.org/10.1051/meca:2004003 | |
Published online | 24 February 2004 |
- H. Louis, W. Schikorr, Fundamental aspects in cleaning with high-speed waterjets, Proc 6th Int Conf Jet Cutting Techn. Guildford (1982) 217–228 [Google Scholar]
- A.F. Conn, Waterjet cleaning for in-factory application, Proc. 11th Int. Conf. Jet Cutting Techn. Dordrecht (1992) 443–449 [Google Scholar]
- S.S. Wu, T.J. Kim, An application study of plain waterjet process for coating removal, Proc 8th Int. Conf. Jet Cutting Techn. Houston (1995) 779–792 [Google Scholar]
- P.L. Kaye, C.S.J. Pickles, Field J.E., Julian K.S., Investigation of erosion process as cleaning mechanism in the removal of thin deposited soils, Wear 186-187 (1995) 413–420 [CrossRef] [Google Scholar]
- M.C. Leu, P. Meng, E.S. Geskin, L. Tismeneskiy, Mathematical modeling and experimental verification of stationary waterjets cleaning process, Trans. ASME J. Manuf. Sc. Engin., 120 (1998) 571–579 [Google Scholar]
- P. Meng, E.S. Geskin, M.C. Leu, F. Li, L. Tismeneskiy, An analytical and experimental study of cleaning with moving waterjets, Trans. ASME J. Manuf. Sc. Engin., 120 (1998) 580–589 [CrossRef] [Google Scholar]
- G.S. Springer, Erosion by Liquid Impact. Scripta Publishing Co., Washington, DC, (1976) [Google Scholar]
- T. Mabrouki, A. Cornier, K. Raissi, Experimental investigation and numerical modeling of HP pure waterjet impingement in the aeronautical decoating process, 13th Int. Conf. Surf. Treat. Aeron. Aeros. Ind. Surfair 2000, (Cannes 14–16 June 2000) [Google Scholar]
- T. Mabrouki, A. Cornier, K. Raissi, The study of HP pure waterjet impact as the primary mechanism of paint decoating process, 14th Int. Conf. Jetting Techn. (Brugge Belgium 21–23 September 1998) pp. 563–577 [Google Scholar]
- T. Mabrouki, K. Raissi, A. Cornier, Numerical simulation of high velocity pure waterjet impingement on coated material. 15th Int. Conf. Jetting Techn. (Ronneby Sweeden, 6–8 September 2000) pp. 199–217 [Google Scholar]
- T. Mabrouki, exploration expérimentale et modélisation numérique des impacts fluidiques : Contribution à l'étude du décapage par Jet d'eau pure HP, Thèse de Doctorat ENSAM-Paris-France (6 juin 2000) [Google Scholar]
- T. Mabrouki, K. Raissi, A. Cornier, A numerical simulation and experimental study of the interaction between a pure high-velocity waterjet and targets: contribution to investigate the decoating process. Wear 239 (2000) 260–273 [Google Scholar]
- K. Yanaida, Flow characteristics of water jets. Proc. 2nd Int. Symp. Jet Cutting Tech., BHRA Fluid Engng., Cranfield (1974) A2/19–A2/32 [Google Scholar]
- K.F. Neusen, T.G. Gores, R.S. Amano, Axial variation of particle and drop velocities downstream from an abrasive water jet mixing tube, N.G. Allen (ed.). Jet Cutting Tech. Mechan. Engng. Publ. Ltd., London (1994) 93–103 [Google Scholar]
- R.A. Tikhomirov, V.B. Babanini, E.N. Pethukov, High-pressure jet cutting, ASME Press, New York (1992) [Google Scholar]
- J.O. Hallquist, LS-DYNA3D : Theoretical manual (Livermore Software Technology) (1997) [Google Scholar]
- W.F. Adler, Waterdrop impact modeling, Wear 186-187 (1995) 341–351 [CrossRef] [Google Scholar]
- LS-Dyna3D Course, Fluid/Structure coupling (Dynalis-ChE-19-10-1998) [Google Scholar]
- D.J. Benson, Momentum advection on a staggered mesh, J. Comp. Phys. 100 (1992) [Google Scholar]
- M.C. Rochester, J.H. Brunton, High-speed impact of liquid jets on solids, 1st Int. Symp. on Jet Cutting Technology (Coventry 1972) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.