Open Access
Mécanique & Industries
Volume 5, Number 4, Juillet-Août 2004
Page(s) 419 - 428
Published online 28 September 2005
  1. G.B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid, Proc. Roy. Soc. A102 (1922) 161–179 [Google Scholar]
  2. S.G. Advani, C.L. Tucker, Closure approximations for three-dimensional structure tensors, J. Rheol. 34 (1990) 367–386 [CrossRef] [Google Scholar]
  3. J.S. Cintra, C.L. Tucker, Orthotropic closure approximations for flow-induced fiber orientation, J. Rheol. 39(6) (1995) 1095–1122 [CrossRef] [Google Scholar]
  4. E.D. Wetzel, C.L. Tucker, Area tensors for modeling microstructure during laminar liquid-liquid mixing, Int. J. of Multiphase Flow 25 (1999) 35–61 [CrossRef] [Google Scholar]
  5. V. Verleye, F. Dupret, Numerical prediction of fiber orientation in complex injection molded parts, Proceedings of the ASME Winter Annual Meeting, MD, vol. 49. HTD-vol. 283 (1994) 264–279 [Google Scholar]
  6. B.E. VerWeyst, Numerical Prediction of Flow-Induced Fiber Orientation in 3D Geometries, Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 1998 [Google Scholar]
  7. E.D. Wetzel, C.L. Tucker, Area tensors for modeling microstructure during laminar liquid-liquid mixing, Int. J. of Multiphase Flow 25 (1999) 35–61 [CrossRef] [Google Scholar]
  8. F. Folgar, C.L. Tucker, Orientation behavior of fibers in concentrated suspensions, J. Reinforced Plastics and Composites 3 (1984) 99–119 [Google Scholar]
  9. R.S. Bay, Fiber orientation in injection molded composites: A comparison of theory and experiment, Ph.D. dissertation, University of Illinois, Urbana-Champaign, 1991 [Google Scholar]
  10. X.-J. Fan, N. Phan-Thien, R. Zheng, A direct simulation of fibre suspensions, J. Non-Newtonian Fluid Mech. 74 (1998) 113–135 [CrossRef] [Google Scholar]
  11. N. Phan-Thien, X.-J. Fan, R.I. Tanner, R. Zheng, Folgar-Tucker constant for a fibre suspension in a Newtonian Fluid, J. Non-Newtonian Fluid Mech. 103 (2002) 251–260 [CrossRef] [Google Scholar]
  12. S. Ranganathan, S.G. Advani, Fiber-fiber interactions in homogeneous flows of nondilute suspensions, J. Rheol. 35(8) (1991) 1499–1522 [CrossRef] [Google Scholar]
  13. A. Aït-Kadi, M. Grmela, Modeling the rheological behavior of fiber suspensions in viscoelastic media, J. Non-Newtonian Fluid Mech. 53 (1994) 65-81 [CrossRef] [Google Scholar]
  14. G.K. Batchelor, The stress system in a suspension of free-force particles, J. Fluid Mech. 41 (1970) 545–570 [CrossRef] [Google Scholar]
  15. J.L. Ericksen, Transversely Isotropic fluid, Kolloid Z. 173 (1960) 117–122 [CrossRef] [Google Scholar]
  16. G.G. Lipscomb, Analysis of suspension rheology in complex flows, Ph.D. dissertation, University of California, Berkeley, 1987 [Google Scholar]
  17. G.L. Hand, A theory of anisotropic fluids, J. Fluid Mech. 13 (1962) 33–46 [Google Scholar]
  18. H. Giesekus, Elasto-viskose flüssigkeiten, für die in stationären schichtströmungen sämtliche normalspannungskomponenten verschieden grob sind, Rheol. Acta. 2(50) (1962) 50–62 [CrossRef] [Google Scholar]
  19. G. Ausias, J.F. Agassant, M. Vincent, P.G. Lafleur, P.A. Lavoie, P.J. Carreau, Rheology of Short Fiber Reinforced Polypropylene, J. Rheol. 36 (1992) 525–542 [CrossRef] [Google Scholar]
  20. H.M. Laun, Orientation effects and rheology of short glass fiber-reinforced thermoplastics, Coll. Polym. Sci. 262 (1984) 257–269 [CrossRef] [Google Scholar]
  21. M. Sepehr, G. Ausias, P.J. Carreau, Short fiber filled polypropylene rheology under transient shear flows, soumis au J. of Non-Newtonian Fluid Mech. (2003) [Google Scholar]
  22. C. Lacroix, M. Grmela, P.J. Carreau, Morphological evolution of immiscible polymer blends in simple shear and elongational flows, J. Non-Newtonian Fluid Mech. 86 (1999) 37–59 [CrossRef] [Google Scholar]
  23. N. Phan-Thien, X.J. Fan, B.C. Khoo, A new constitutive model for monodispersed suspensions of spheres at high concentrations, Rheol. Acta. 38 (1999) 297–304 [CrossRef] [Google Scholar]
  24. N. Phan-Thien, X.J. Fan, R. Zheng, A numerical simulation of suspension flow using a constitutive model based on anisotropic interparticle interactions, Rheol. Acta. 39 (2000) 122–130 [CrossRef] [Google Scholar]
  25. G. Ausias, J.F. Agassant, M. Vincent, Flow and Fibre Orientation Calculations in Reinforced Thermoplastic Extruded Tubes, International Polymer Processing, IX (1) (1994) 51–59 [Google Scholar]
  26. K. Chiba, K. Yasuda, K. Nakamura, Numerical solution of fiber suspension flow through a parallel plate channel by coupling flow field with fiber orientation distribution, J. Non-Newtonian Fluid Mech. 99 (2001) 145–157 [CrossRef] [Google Scholar]
  27. A. Poitou, F. Chinesta, R. Torres, Numerical simulation of the steady recirculating flow of fiber suspensions, J. Non-Newtonian Fluid Mech. 90 (2000) 65–80 [CrossRef] [Google Scholar]
  28. C.L. Tucker, H.M. Huynh, Fiber orientation in short flow length parts: limitation of current predictions, 17th Annual Meeting of the PPS, Montreal May, 2001, pp. 21–24 [Google Scholar]
  29. G. Ausias, J.F. Agassant, M. Vincent, Optimization of the tube extrusion die for short fiber filled polymers, Composites Sci. and Technology 56 (1996) 719–724 [Google Scholar]
  30. J. Jarrin, G. Ausias, M. Vincent, E. Vinciguerra, F. Dawans, Production of tubes of thermoplastic material reinforced by fibres of controlled orientation and equipment for preparation, Brevet européen n° EP 0503364, Brevet USA n° US 5307843, 1992, Accesion number: 199703-E2-D-0039. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.