Open Access
Mécanique & Industries
Volume 5, Number 4, Juillet-Août 2004
Page(s) 429 - 440
Published online 28 September 2005
  1. S. Eroglu, T. Baykara, Effects of powder mixing technique and tungsten powder size on the properties of tungsten heavy alloys, J. Material Processing and Technology 103 (2000) 288–292 [CrossRef] [Google Scholar]
  2. T. Shimiza, Y. Murakoshi, K. Wechwitayakhlung, T. Sano, H. Negishi, Characterization of the molding methods and the binder system in the MIM process, J. Material Processing and Technology 63 (1997) 753–758 [CrossRef] [Google Scholar]
  3. D.M. Liu, W.J. Tseng, Binder removal from injection moulded zirconia ceramics, Ceramics International 25 (1999) 529–534 [CrossRef] [Google Scholar]
  4. R.M. German, A. Bose, Injection of metals and ceramics, Princeton, USA, 1997 [Google Scholar]
  5. R.M. German, Sintering theory and practise, John Wiley & Sons, New York, 1996 [Google Scholar]
  6. T. Barrière, Expérimentations, Modélisation et Simulation Numérique du Moulage par Injection de Poudres Métalliques, Thèse de doctorat, Université de Franche-Comté, Besançon, 2000 [Google Scholar]
  7. T. Barrière, D. Renault, J.C. Gélin, M. Dutilly, Moulage par injection de poudres métalliques, Expérimentations, modélisation et simulation, Mécanique & Industries 1 (2000) 201–212 [CrossRef] [Google Scholar]
  8. T. Barrière, J.C. Gélin, B. Liu, Experimental and numerical investigations on the properties and quality of parts produced by MIM, Powder Metallurgy 44(3) (2001) 228–234 [CrossRef] [Google Scholar]
  9. T. Barrière, J.C. Gélin, B. Liu, Analysis of phase segregation effects arising in fluid-particle flows during metal injection molding, Int. J. Forming Process 4(3–4) (2001) 199–216 [CrossRef] [Google Scholar]
  10. T. Barrière, B. Liu, J.C. Gélin, Improving mould design and injection parameters in metals injection moulding by accurate 3D finite element simulation, J. Materials Processing and Technology 125–126 (2002) 518–524 [Google Scholar]
  11. J.C. Gélin, T. Barrière, M. Dutilly, Experiments and computational modeling of metal injection molding for forming small parts, Annals of the CIRP 48(1) (1999) 179–182 [CrossRef] [Google Scholar]
  12. A. Louge, Étude théorique et expérimentale du comportement et de la ségrégation de milieux pâteux lors de l'extrusion, Thèse de doctorat, Université de la Méditerranée, Aix-Marseille, 1996 [Google Scholar]
  13. A. Acrivos, Shear-induced particle diffusion in concentrated suspensions of non colloidal particles, J. Rheol. 39(5) (1995) 813–826 [CrossRef] [Google Scholar]
  14. V.V. Bilovol, L. Kowalski, J. Duszczyk, Application of fully 3D simulation for studying of pressure development during powder injection moulding process, P.I.M 2000, R.M. German (ed.), Pennsylvania State University, USA, 2000, 25–29 [Google Scholar]
  15. K.M. Kulkarni, Factors affecting dimentional precision of MIM Parts under production conditions, Advances Powder Metallurgy and Particulate Materials 19 (1996) 157–170 [Google Scholar]
  16. J.C. Gélin, T. Barrière, B. Liu, Mould design methods by experiment and numerical simulation in metal injection molding, J. Engineering Manufacture 126, Part B (2002) 1533–1547 [Google Scholar]
  17. Catamold®, Feedstock for powder Injection Molding : Processing-Properties-Application, Technical Information, BASF (1997) 1–10 [Google Scholar]
  18. T. Hartwig, G. Veltl, F. Petzoldt, R. Scholl, B. Kieback, Powders for metal injection molding, J. European Ceramic Society 18 (1998) 1211–1216 [Google Scholar]
  19. T. Iwai, T. Aizawa, J. Kihara, Three dimensional granular modeling for metal injection molding, Powder Metallurgy World Congress, PM'94, ed. S.F.2M. and E.P.M.A, Paris 6–9 juin 2 (1994) 1097–1100 [Google Scholar]
  20. R.M. Bowen, (Ed.) Theory of Mixtures, Continuum Physics, Academic Press, New York, 3, 1976 [Google Scholar]
  21. M. Dutilly, Modélisation du moulage par injection de poudres métalliques, Thèse de doctorat, Université de Franche-Comté, Besançon, 1998 [Google Scholar]
  22. B. Lanteri, H. Burlet, A. Poitou, I. Campion, Powder injection molding, an original simulation of paste flow, Eur. J. Mech., A/Solids 15(3) (1996) 465–485 [Google Scholar]
  23. P.M. Gresho, S.T. Chan, R.L. Lee, C.D. Upson, A modified finite element method for solving the time dependent, incompressible Navier-Stokes equations. Part 1 and Part 2, Int. J. Numer. Methods in Fluids 4 (1984) 557–598 [CrossRef] [Google Scholar]
  24. A.S. Usmani, J.T. Cross, R.W. Lewis, A finite element model for the simulations of mould filling in metal casting and the associated heat transfer, Int. J. Numer. Methods in Engrg. 35 (1992) 787–806 [Google Scholar]
  25. R.W. Lewis, H.C. Huang, A.S. Usmani, J.T. Cross, Finite element analysis of heat transfer and flow problems using adaptive remeshing including application to solidification problems, Int. J. Numer. Methods in Engrg. 32 (1991) 767–781 [CrossRef] [Google Scholar]
  26. R. Lohner, K. Morgan, O.C. Zienkiewicz, The solution of non linear hyperbolic equation systems by finite element method, Int. J. Numer. Methods in Fluids 4 (1984) 1043–1063 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.