Open Access
Issue
Mécanique & Industries
Volume 5, Number 6, Novembre-Décembre 2004
Page(s) 673 - 676
DOI https://doi.org/10.1051/meca:2004070
Published online 16 December 2004
  1. R. Saurel, M. Larini, J.C. Loraud, Exact and approximate Riemann solver for real gases, J. Comp. Phys. 112(1) (1994a) 126–137 [Google Scholar]
  2. R. Saurel, E. Daniel, J.C. Loraud, Two-phase flows: second-order schemes and boundary conditions, AIAA J. 32(6) (1994b) 1214–1221 [CrossRef] [Google Scholar]
  3. E. Toro, Riemann solvers and numerical methods for fluid dynamics, Springer Verlag, 1997 [Google Scholar]
  4. P.L. Roe, Approximate Riemann solvers, parameter vectors and difference schemes, J. Comp. Phys. 43 (1981) 357–372 [NASA ADS] [CrossRef] [Google Scholar]
  5. Z. Bilicki, J. Kestin, M.M. Pratt, A reinterpretation of the results of the Moby-Dick experiments in terms of the nonequilibrium model, J. Fluid Engng. 112 (1990) 212–217 [CrossRef] [Google Scholar]
  6. P. Downar-Zapolski, Z. Bilicki, L. Bolle, J. Franco, The non-equilibrium model for one-dimensionnal flashing liquid flow, Int. J. Multiphase Flow 22 (1996) 473–483 [CrossRef] [Google Scholar]
  7. Z. Bilicki, J. Kestin, Physical aspects of the relaxation model in two phase flow, Proc. R. Soc. Lond. A428, 1990, pp. 379–397 [Google Scholar]
  8. T.S. Shin, O.C. Jones, Nucleation and flashing in nozzles-1: a distributed nucleation model, Int. J. Multiphase Flow 19 (1993) 943–964 [CrossRef] [Google Scholar]
  9. V.N. Blinkov, O.C. Jones, B.I. Nigmatulin, Nucleation and flashing in nozzles-2: comparison with experiments using a five-equation model for vapour void development, Int. J. Multiphase Flow 19 (1993) 965–986 [CrossRef] [Google Scholar]
  10. T.S. Shin, O.C. Jones, An active cavity model for flashing, Nuclear Engineering and Design 95 (1986) 185–196 [CrossRef] [Google Scholar]
  11. M. Réocreux, Contribution à l'étude des débits critiques en écoulement diphasique eau-vapeur, Thèse de doctorat es-sciences, Université Scientifique et Médicale de Grenoble, France, 1974 [Google Scholar]
  12. V.V. Rusanov, The calculation of the interaction of non-stationary shock waves and obstacles, Zh. Vich. Nat. 2 (1961) 304–320 [Google Scholar]
  13. T. Buffard, T. Gallouët, J.M. Hérard, Schéma VFROE en variables caractéristiques, Principe de base et application aux gaz réels, rapport EDF HE-41/96/041/A, 1996 [Google Scholar]
  14. E. Faucher, Simulation numérique des écoulements unidimensionnels instationnaires avec autovaporisation, thèse de doctorat en systèmes énergétiques et contrôle des processus, Université Paris XII-Créteil, 2000 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.