Open Access
Mécanique & Industries
Volume 6, Number 3, Mai-Juin 2005
Congrès Français de Mécanique : de l'AUM à l'AFM
Page(s) 309 - 313
Published online 01 July 2005
  1. N. Späth, V. Zerrouki, P. Poubanne, J.Y. Guedou, 718 Superalloy Forging Simulation: a way to improve process and material potentialities, International Symposium on Superalloys 718, 625, 706 and various derivatives, Pittsburg, 2001 [Google Scholar]
  2. G. Losilla, P. Montmitonnet, M. Bouzaiane, P.E. Clément, Modélisation du laminage circulaire par éléments finis : Calculs thermomécaniques et microstructuraux, Colloque Matériaux, Tours, 2002 [Google Scholar]
  3. S. Ponnelle, N. Späth, T. Godon, J.Y. Guedou, Numerical prediction of microstructure and mechanical properties of 718 alloy forges engine parts: a process optimisation tool, Colloque Matériaux, Tours, 2002 [Google Scholar]
  4. F. Gu, S. Kapor, R. de Vor, An enhance cutting force model for face milling with variable cutter feed motion and complex workpiece geometry, Transactions ASME J. Int. Manufacturing Sci. Eng. 119 (1997) 467–475 [CrossRef] [Google Scholar]
  5. Y.G. Liao, S.J. Hu, An integrated model of a fixture-workpiece system for surface quality prediction, Int. J. Adv. Manufacturing Techn. 117 (2001) 810–818 [CrossRef] [Google Scholar]
  6. E. Cheung, W. Yuan, M. Hua, Physical simulation of the deflection in turning of thin disk-shaped workpiece, Int. J. Adv. Manufacturing Techn. 15 (1999) 863–868 [CrossRef] [Google Scholar]
  7. V. Kalhori, Modeling and simulation of mechanical cutting, Thèse, Lulea University of Technology, 2001 [Google Scholar]
  8. C.R. Liu, M.M. Barash, Variables governing patterns of mechanical residual stress in a machined surface, J. Eng. Ind. 104 (1982) 257–264 [CrossRef] [Google Scholar]
  9. K. Okushima, K. Yoshiaki, The residual stress produced by metal cutting, Ann. CIRP 20 (1971) 13–14 [Google Scholar]
  10. Z.C. Lin, W.L. Lai, H.Y. Lin, C.R. Liu, Residual stresses with different tool flank wear lengths in the ultra precision machining of Ni-P alloys, J. Mat. Processing Techn. 65 (1997) 116–126 [CrossRef] [Google Scholar]
  11. Y. Altintas, Manufacturing automation: metal cutting mechanics, machine tool vibrations and CNC design, Cambridge University Press, ISBN 0-521-65973-6, 2000 [Google Scholar]
  12. K. Van Luttervelt, Final report on the activities of the CIRP Working Group Modeling of Machining Operations, 2002 [Google Scholar]
  13. C.A. Van Luttervelt, T.H.C. Childs, I.S. Jawahir, S. Klocke, B.K. Venuvinod, Present Situation and Future Trends in Modelling of Machining Operations Progress Report of the CIRP Working Group Modelling of Machining Operations, Ann. CIRP 47 (1998) 587–624 [Google Scholar]
  14. AFNOR Standard NFE 66-520, 1997, Working Zones of cutting Tool-Material Couple [Google Scholar]
  15. P.H. Arrazola, Simulation numérique de la coupe : importance de la loi de comportement du matériau et de la loi de friction, Thèse, École Centrale de Nantes, 2002 [Google Scholar]
  16. B. Changeux, Loi de comportement pour l'usinage. Localisation de la déformation et aspects microstructuraux, Thèse, École nationale supérieure d'arts et métiers, 2001 [Google Scholar]
  17. M. Meiller, J.L. Lebrun, M. Touratier, D. Ryckelyinck, Friction law for tool/workpiece contact area in dry machining, Proceedings of the international workshop on friction and flow stress in cutting and forming, 2000, pp. 101–109 [Google Scholar]
  18. J.Q. Xie, A.E. Bayoumi, H.M. Zbib, FEA modelling and simulation of shear localized chip formation in metal cutting, Int. J. Machine Tools and Manufacture 38 (1998) 1067–1087 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.