Open Access
Issue
Mécanique & Industries
Volume 7, Number 2, Mars-Avril 2006
Page(s) 169 - 177
DOI https://doi.org/10.1051/meca:2006031
Published online 21 July 2006
  1. T.H. Havelock, The pressure of water waves upon a fixed obstacle on water, Proc. R. Soc. London A 175 (1940) 409–421 [CrossRef] [Google Scholar]
  2. R.C. McCamy, R.A. Fuchs, Wave forces on a pile: a diffraction theory, Tech. Memo. 69 (1954) U.S. Army Corps of Engineers [Google Scholar]
  3. Y.-M. Scolan, Contribution à l'étude des non-linéarités de surface libre. Deux cas d'application : clapotis dans un bassin rectangulaire ; diffraction au second ordre sur un groupe de cylindres verticaux, Thèse de doctorat, Paris VI, 1989 [Google Scholar]
  4. B. Molin, Second-order diffraction loads upon three-dimensional bodies, Appl. Ocean Res. 1 (1979) 197–202 [CrossRef] [Google Scholar]
  5. J.N. Newman, The second-order wave force on a vertical cylinder, J. Fluid Mech. 320 (1996) 417–443 [CrossRef] [Google Scholar]
  6. Š. Malenica, B. Molin, Third-harmonic wave diffraction by a vertical cylinder, J. Fluid Mech. 302 (1995) 203–229 [CrossRef] [MathSciNet] [Google Scholar]
  7. B. Teng, S. Kato, Third-order wave force on axisymmetric bodies, Ocean Eng. 29-7 (2002) 815–843 [CrossRef] [Google Scholar]
  8. M.S. Longuet-Higgins, O.M. Phillips, Phase velocity effects in tertiary wave interactions, J. Fluid Mech. 12 (1962) 333–336 [CrossRef] [MathSciNet] [Google Scholar]
  9. B. Molin, F. Remy, O. Kimmoun, E. Jamois, The role of tertiary wave interactions in wave-body problems, J. Fluid Mech. 528 (2005) 323–354 [CrossRef] [Google Scholar]
  10. M.S. Longuet-Higgins, E.D. Cokelet, The deformation of steep surface waves on water. 1. A numerical method of computation, Proc. R. Soc. London A 364 (1976) 1–26 [Google Scholar]
  11. V.E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 9 (1968) 190–194 [CrossRef] [Google Scholar]
  12. P. Ferrant, Š. Malenica, B. Molin, Nonlinear wave loads and runup on a vertical cylinder, Nonlinear water wave interaction, O. Mahrenholtz et M. Markiewicz (ed.), WIT Press, 1999, pp. 101–135 [Google Scholar]
  13. Y. Agnon, P.A. Madsen, H.A. Schäffer, A new approach to high-order Boussinesq models, J. Fluid Mech. 399 (1999) 319–333 [CrossRef] [MathSciNet] [Google Scholar]
  14. P.A. Madsen, H.B. Bingham, H. Liu, A new Boussinesq method for fully nonlinear waves from shallow to deep water, J. Fluid Mech. 462 (2002) 1–30 [MathSciNet] [Google Scholar]
  15. D.R. Fuhrman, Numerical solutions of Boussinesq equations for fully nonlinear and extremely dispersive water waves, Ph.D. Thesis, Technical University of Denmark, 2004 [Google Scholar]
  16. F. Dias, Ch. Kharif, Nonlinear gravity and capillary-gravity waves, Annu. Rev. Fluid Mech. 31 (1999) 301–346 [CrossRef] [Google Scholar]
  17. M. Olagnon, Vagues extrêmes – Vagues scélérates, 2000, http://www.ifremer.fr/web-com/molagnon/jpo2000/ [Google Scholar]
  18. Ch. Kharif, E. Pelinovsky, Physical mechanisms of the rogue wave phenomenon, Eur. J. Mech. B. Fluid. 22 (2003) 603–634 [Google Scholar]
  19. M.M. Rienecker, J.D. Fenton, A Fourier approximation method for steady water waves, J. Fluid Mech. 104 (1981) 119–137 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.