Open Access
Mécanique & Industries
Volume 7, Number 5-6, Septembre-Décembre 2006
Page(s) 579 - 589
Published online 21 March 2007
  1. H. Schlichting, Laminare strahlausbreitung, ZAMM, 13, 260, Boundary layer theory, Co. McGraw-Hill, 1933, pp. 164–181 [Google Scholar]
  2. W. Bickley, The plane jet, Phil. Mag. 23 (1937) 727 [Google Scholar]
  3. O.G. Martynenko, V.N. Korovkin, Yu.A. Sokovishin, The class of self-similar solutions for laminar buoyant jets, Int. J. Heat Mass Tran. 32 (1989) 2297–2307 [CrossRef] [Google Scholar]
  4. W.S. Yu, H.T. Lin, H.C. Shih, Rigorous numerical solutions and correlations for two-dimensional laminar buoyant jets, Int. J. Heat Mass Tran. 35 (1992) 1131–1141 [CrossRef] [Google Scholar]
  5. L. Landau, See L.D. Landau, E.M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford, 1943, p. 86 [Google Scholar]
  6. O.G. Martynenko, V.N. Korovkin, Numerical investigation of turbulent plane and buoyant jets, Int. J. Heat Mass Tran. 35 (1992) 635–639 [CrossRef] [Google Scholar]
  7. J.C. Mollendorf, B. Gebhart, Thermal Buoyancy in round Laminar Vertical Jets, Int. J. Heat Mass Tran. 16 (1973) 735–745 [CrossRef] [Google Scholar]
  8. R.S. Brand, F.J. Lahey, The heated laminar vertical jet, J. Fluid Mech. 29 (1967) 305–315 [CrossRef] [Google Scholar]
  9. J.W. Yang, R.D. Patel, Effect of Buoyancy on forced convection in a two dimensional wall jet along a vertical wall, J. Heat Transfer 95 (1973) 121–123 [CrossRef] [Google Scholar]
  10. H. Ben Aissia, Y. Zaouali, S. El Golli, Numerical study of the influence of dynamic and thermal exit conditions on axisymmetric laminar bouyant jet, Numerical Heat Transfer, Part A 42 (2002) 427–444 [Google Scholar]
  11. H. Ben Aissia, Étude numérique et expérimentale par imagerie et anémomètre laser doppler d'un jet axisymétrique, thèse, Université El Manar II, Tunisie, 2002 [Google Scholar]
  12. M.L. Albertson, Jun. Asce, Y.B. Dai, R.A. Jensen, H. Rouse, M. Asce, Diffusion of submerged jets, Am. Soc. civil engineers 74 (1948) 1571–1596 [Google Scholar]
  13. W.M. Pitts, Effects of global density and Reynolds number variations on mixing in turbulent axisymmetric jets, Rapport NBSIR 86-3340, Department of commerce, Washington, 1986 [Google Scholar]
  14. A.D. Birch, D.R. Brown, H.G. Dodson, J.R. Thomas, The turbulent concentration field of a methane jet, J. Fluid Mech. 88 (1978) 431 [CrossRef] [Google Scholar]
  15. L. Fulachier, R. Borghi, F. Anselmet, P. Paranthoen, Influence of density variations on the structure of low-speed turbulent flows, J. Fluid Mech. 203 (1989) 577–593 [CrossRef] [Google Scholar]
  16. D.R. Dowling, P.E. Dimotakis, Similarity of the concentration field of gas phase turbulent jets, J. Fluid Mech. 218 (1990) 109–141 [CrossRef] [Google Scholar]
  17. J.P.H. Sanders, B. Sarh, I. Gokalp, Variable density effects in axisymmetric isothermal turbulent jets: a comparison between a first and a second order turbulence model, Int. J. Heat Mass Transfer 40 (1997) 823–842 [CrossRef] [Google Scholar]
  18. J.P. Sanders, B. Sarh, I. Gokalp, Étude numérique des jets turbulents à température élevée, Review of general thermodynamics 35 (1996) 232–242 [CrossRef] [Google Scholar]
  19. W.M. Kays, M.E. Crawford, Convective heat and mass transfer, Co. McGraw-Hill Book, New York, 2nd Ed, 1980 [Google Scholar]
  20. C. Fonade, Cours. Étude des jets, Application à la fluidique, Institut national polytechnique de Toulouse, France, 1967 [Google Scholar]
  21. A.M. Dalbert, F. Penot, J.L. Peube, Convection naturelle laminaire dans un canal vertical chauffé à flux constant, Int. J. Heat Mass Tran. 24 (1981) 1463–1473 [CrossRef] [Google Scholar]
  22. C.A.J. Fletcher, Computational techniques for fluid dynamics 1, Fundamental and general techniques, Co. Springer-Verlag, Berlin Heidelberg, 2nd Ed., 1991 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.