Open Access
Issue
Mécanique & Industries
Volume 8, Number 3, Mai-Juin 2007
Congrès Mécanique de Grenoble
Page(s) 199 - 205
DOI https://doi.org/10.1051/meca:2007039
Published online 17 August 2007
  1. P. Ponte Castañeda, E. Tiberio, A second order homogenization method in finite elasticity and applications to black-filled elastomers, J. Mech. Phys. Solids 48 (2000) 1389–1411 [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Brieu, F. Devries, Homogénéisation de composites élastomères, Méthode et algorithme, Comptes Rendus de l'Académie des Sciences, Series IIB, Mechanics-Physics-Chemistry-Astronomy 326 (1998) 379–384 [Google Scholar]
  3. N. Lahellec, F. Mazerolle, J.C. Michel, Second order estimate of the macroscopic behavior of periodic hyperelastic composites: theory and experimental validation, J. Mech. Phys. Solids 52 (2004) 27–49 [CrossRef] [Google Scholar]
  4. P. Ponte Castañeda, Exact second order estimates for the effective mechanical properties of non-linear composite materials, J. Mech. Phys. Solids 44 (1996) 827–862 [CrossRef] [MathSciNet] [Google Scholar]
  5. O. Lopez-Pamies, P. Ponte Castañeda, On the overall behavior, microstructure evolution, and macroscopic stability in reinforced rubbers at large deformations, II- Application to cylindrical fibers, J. Mech. Phys. Solids 54 (2006) 831–863 [CrossRef] [MathSciNet] [Google Scholar]
  6. R. Hill, Convexity conditions and existence theorems in non-linear elasticity, Arch. Rat. Mech. Anal. 63 (1972) 337–403 [Google Scholar]
  7. V.M. Levin, Thermek expansion coefficients of heterogeneous materials, Mekh. Tverd. Tela 2 (1967) 83–94 [Google Scholar]
  8. W.H. Press, et al., Numerical recipes in Fortran, The art of scientific computing, 2nd Edition, Cambridge University Press, 1992 [Google Scholar]
  9. R.W. Ogden, Non linear elastic deformations, Dover Publications Inc., New York, 1984 [Google Scholar]
  10. I. Doghri, A. Ouaar, Homogenization of two-phase elasto-plastic composite materials and structures study of tangent operators, cyclic plasticity and numerical algorithms, Inter. J. Solids and Structures 40 (2003) 1681–1712 [Google Scholar]
  11. J. Lambert-Diani, C. Rey, New phenomenological behavior laws for rubbers and thermoplastics elastomers, Eur. J. Mech., A, Solids 18 (1999) 1027–1043 [CrossRef] [Google Scholar]
  12. R.P. Brown, Physical testing of Polymer, 3rd Edition, Chapman and Hall, 1984 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.