Open Access
Issue
Mécanique & Industries
Volume 9, Number 1, Janvier-Février 2008
Page(s) 1 - 8
DOI https://doi.org/10.1051/meca:2008001
Published online 17 May 2008
  1. E. Jantunen, Indirect multisignal monitoring and diagnosis of drill wear, Ph.D. Thesis, Helsinki University of technology, 2006 [Google Scholar]
  2. C.S. Lee, D.A. Dornfeld, Design and implementation of sensor-based tool-wear monitoring systems, Mechanical Systems and Signal Processing 10 (1996) 328–347 [Google Scholar]
  3. H.V. Ravindra, Y.G. Srinisvasa, R. Krishnamurthy, Modeling of tool wear based on cutting forces in turning, Wear 169 (1993) 25–32 [Google Scholar]
  4. I. Abu-Mahfouz, Drilling wear detection and classification using vibration signals and artificial neural network, Int. J. Machine Tools Manufacture 43 (2003) 707–720 [Google Scholar]
  5. T. Obikawa, J. Shinozuka, Monitoring of flank wear of coated tools in high speed machining with a neural network art2, Int. J. Machine Tools Manufacture 44 (2004) 1311–1318 [CrossRef] [Google Scholar]
  6. Dimla E. Dimla Snr, Sensor signals for tool-wear monitoring in metal cutting operations, a review of methods, Int. J. Machine Tools Manufacture 40 (200) 1073–1098 [Google Scholar]
  7. D.E. Dimla Snr, P.M. Lister, On-line metal cutting tool condition monitoring I: force and vibration analyses, Int. J. Machine Tools Manufacture 40 (2000) 739–768 [Google Scholar]
  8. T.I. El-Wardany, D. Gao, M.A. Elbestawi, Tool condition monitoring in drilling using vibration signature analysis, Int. J. Machine Tools Manufacture 36 (1996) 687–711 [Google Scholar]
  9. C.Y. Jiang, Y.Z. Zhang, H.J. Xu, In-process monitoring of tool wear stage by the frequency band-energy method, Annals of the CIRP 36 (1997) 45–48 [CrossRef] [Google Scholar]
  10. R.E. Haber, J.E. Jiménez, C.R. Peres, J.R. Alique, An investigation of tool-wear monitoring in a high-speed machining process, Sensors and Actuators A 16 (2004) 539–545 [Google Scholar]
  11. X. Li, S. Dong, P.K. Venuvinod, Hybrid learning for tool wear monitoring, Int. J. Adv. Manuacturing Techn. 16 (2000) 303–307 [CrossRef] [Google Scholar]
  12. D. Shi, N.N. Gindy, Tool wear predictive model based on least squares support vector machines, Mechanical Systems and Signal Processing (2006) doi:10.1016/j.ymssp.2006.07.016 [Google Scholar]
  13. G. O'Donnel, P. Young, K. Kelly, G. Byrne, Towards the improvement of tool condition monitoring systems in the manufacturing environment, J. Mat. Processing Tech. 119 (2001) 133–139 [CrossRef] [Google Scholar]
  14. M. Ghil, M.R. Allen, M.D. Dettinger, K. Ide, D. Kondrashov, M.E. Mann, A.W. Robertson, A. Saunders, Y. Tian, F. Varadi, P. Yiou, Advanced spectral methods for climatic time series, Rev. Geophys. 40 (2002) 1.1–1.41 [Google Scholar]
  15. D.R. Salgado, F.J. Alonso, Tool wear detection in turning operations using singular spectrum analysis, J. Materials Processing Tech. 171 (2006) 451–458 [Google Scholar]
  16. C. Aldrich, M. Barkhuizen, Process system identification strategies based on the use of singular spectrum analysis, Minerals engineering 16 (2003) 815–826 [CrossRef] [Google Scholar]
  17. G.T. Jemwa, C. Aldrich, Classification of process dynamics with Monte Carlo singular spectrum analysis, Computers and Chemical Eng. 30 (2006) 816–831 [CrossRef] [Google Scholar]
  18. D.S. Broomhead, G. King, Extracting qualitative dynamics from experimental data, Phys. D 20 (1986) 217–236 [Google Scholar]
  19. N. Golyandina, V. Nekrutkin, A. Zhigljavsky, Analysis of Time Series Structure- SSA and related techniques, Chapman & Hall, CRC, 2001 [Google Scholar]
  20. P. Yiou, D. Sornette, M. Ghil, Data-adaptive wavelets and multi-scale singular spectrum analysis, Phys. D 142 (200) 254–290 [Google Scholar]
  21. I.H. Witten, E. Frank, Data mining: Practical machine learning tools and techniques, Morgan Kaufmann, San Francisco, 2005 [Google Scholar]
  22. R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, Morgan Kaufmann, 1995, pp. 1137–1143 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.