Open Access
Issue
Mécanique & Industries
Volume 9, Number 2, Mars-Avril 2008
Page(s) 125 - 131
DOI https://doi.org/10.1051/meca:2008016
Published online 09 July 2008
  1. H. Moes, Lubrication and beyond, Utwente lecture notes code 115531, 2000, p. 366 [Google Scholar]
  2. B.J. Hamrock, D. Dowson, Isothermal elastohydrodynamic lubrication of point contacts, Part 2, ellipticity parameter results, ASME J. Tribol. 98 (1976) 375–383 [Google Scholar]
  3. D. Dowson, G.R. Higginson, A numerical solution to elastohydrodynamic problem, J. Mech. Eng. Sci. 1 (1959) 6–15 [CrossRef] [Google Scholar]
  4. H.P. Evans, R.W. Snidle, The elastohydrodynamic lubrication of point contacts at heavy loads, Proc. R. Soc. Lond. A 382 (1982) 183–199 [CrossRef] [Google Scholar]
  5. K.P. Hou, D. Zhu, S.Z. Wen, An inverse solution to the point contact EHL problem under heavy loads, ASME J. Tribol. 109 (1987) 432–436 [CrossRef] [Google Scholar]
  6. A.A. Lubrecht, C.H. Venner, Multilevel methods in lubrication, Amsterdam, Elsevier, 2000 [Google Scholar]
  7. H. Hertz, Über die Berührung fester elastischer Körper und über die Härte, Verhandlungen des Vereins zur Beförderung des Gewerbefleißes, Leipzig, 1882, pp. 449–463 [Google Scholar]
  8. K. Kunert, Spannungsverteilung im Halbraum bei elliptischer Flächenpres–sungsverteilung über einer rechteckigen Druckfläche, Forschung Gebiet Ingenieur-Wesens 27 (1961) 165–174 [CrossRef] [Google Scholar]
  9. J.A. Greenwood, J.H. Tripp, The contact of two nominally flat rough surfaces, Proc. Instn. Mech. Engrs. 185 (1971) 625–633 [Google Scholar]
  10. M. Teodorescu, D. Taraza, N.A. Henein, Simplified elastohydrodynamic friction model of the cam-tappet contact, SAE paper 2003-01-0985, 2003 [Google Scholar]
  11. J. Müllers, Tribologische Modelle zur Einbindung in Mehrkörpersimulations-tools, Robert Bosch GmbH, 2005 [Google Scholar]
  12. A.E.H. Love, A treatise on the mathematical theory of elasticity, Cambridge university press, 4th edition, 1927 [Google Scholar]
  13. N. Ahmadi, L.M. Keer, T. Mura, Non-Hertzian contact stress analysis for an elastic half-space normal and sliding contact, Int. J. Solids Structures 19 (1983) 357–373 [CrossRef] [Google Scholar]
  14. S. Björklund, S. Andersson, A numerical method for real elastic contacts subjected to normal and tangential loading, Elsevier, Wear 179 (1994) 117–122 [CrossRef] [Google Scholar]
  15. A. Majumdar, B. Bhushan, Role of fractal geometry in roughness characterization and contact mechanics of surfaces, ASME J. Tribol. 112 (1990) 205–216 [Google Scholar]
  16. K. Willner, Elasto-plastic normal contact of three-dimensional fractal surfaces using halfspace theory, ASME J. Tribol. 126 (2004) 28–33 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.