Open Access
Mécanique & Industries
Volume 9, Number 5, Septembre-Octobre 2008
Page(s) 407 - 416
Published online 14 March 2009
  1. P. Saad, Modélisation du comportement viscoélastique non-linéaire des élastomères autour d'une précharge, Mécanique & Industries 4 (2003) 133–142 [CrossRef] [Google Scholar]
  2. A. Amin, M. Alam, Y. OKui, An improved hyperelastic relation in modeling viscoelasticity response of natural and high damping rubbers in compression, experiments, parameter identification and numerical verification, Mechanics of Materials 34 (2002) 75–95 [CrossRef] [Google Scholar]
  3. N.P. O'Dowd, W.G. Knauss, Time dependent large principal deformation of polymers, J. Mech. Phys. Solids 43 (1995) 771–792 [CrossRef] [Google Scholar]
  4. G. Lianis, Constitutive equations for viscoelastic solids under finite deformation, J. Appl. Mech. 32 (1965) 623–629 [Google Scholar]
  5. K. Hausler, M.B. Sayir, Nonlinear viscoelastic response of carbon black renforced rubber derived from moderately large deformation in torsion, J. Mech. Phys. Solids 43 (1995) 295–318 [CrossRef] [Google Scholar]
  6. H. Gacem, Comportement visco-hyperélastique des élastomères, Viscoélasticié non-linéaire, Application aux Multicouches, Thèse de doctorat, Université Pierre & Marie Curie, Paris 6, décembre 2007 [Google Scholar]
  7. R.A. Schapery, On a time dependence of viscoelastic variational solutions, Q. Appl. Math. 22 (1964) 207–215 [Google Scholar]
  8. R.A. Schapery, Application of thermodynamics to thermomechanical, fracture and birefringent in viscoelastic phenomena, Q. Appl. Math. 22 (1964) 207 [Google Scholar]
  9. R.A. Schapery, Effect of cyclic loading on the temperature in viscoelastic media with variable properties, AIAA J. 2 (1964) 827–835 [CrossRef] [Google Scholar]
  10. R.A. Schapery, Thermomechanical behavior of viscoelastic media with variable properties subjected to cyclic loading, J. Appl. Mech. Trans. ASME Series E 87 (1965) 611–619 [Google Scholar]
  11. R.A. Schapery, On viscoelastic deformation and failure behavior of composite materials with trbuted flaws, in advanced in Aerospace Structures and Materials, S.S. Wang & WJ. Reir (ed.), New York, ASME 1 (1981) 520 [Google Scholar]
  12. R.A. Schapery, Analysis of damage growth in particulate composites using work potential, Co Engrg. 1 (1991) 167–182 [Google Scholar]
  13. R.A. Schapery, Nonlinear viscoelastic and viscoplastic constitutive-equation with growing damage, Internat. J. Fracture 97 (1999) 33–66 [CrossRef] [Google Scholar]
  14. R.M. Hinterhoelzl, R.A. Schapery, Fem implementation of a three-dimensional viscoelastic constitutive model for particulate composite with damage growth, Mechanics of time dependent Materials 8 (2004) 65–94 [CrossRef] [Google Scholar]
  15. R.A. Schapery, An engineering theory of nonlinear viscoelasticity with applications, Int. J. Solids Structures 2 (1966) 407–426 [CrossRef] [Google Scholar]
  16. R.A. Schapery, A thermodynamic constitutive theory and its application to various nonlinear materials, Int. J. Solids Structures 2 (1966) 407–425 [CrossRef] [Google Scholar]
  17. R.A. Schapery, Nonlinear Viscoelastic characterization and stress analysis of solid propellants, Review Article, Solid Rocket Structural Integrity Abstracts, College of Engineering of Utah, Vol. 3, Series E, September, 1966 [Google Scholar]
  18. R.A. Schapery, Stress analysis of viscoelastic composite materials, J. Composite Mat. 1 (1967) 228–267 [Google Scholar]
  19. J.D. Ferry, Viscoelastic properties of polymers, John Wiley and Sons, 3rd edition, New York, 1980 [Google Scholar]
  20. M.L. Morland, E.H. Lee, Stress analysis for linear viscoelactic materials with temperature variation, Trans. Soc. Rheology 4 (1960) 233–263 [CrossRef] [MathSciNet] [Google Scholar]
  21. E.H. Lee, T.G. Roberts, On the generation of residual stress in thermoviscoelastic bodies, J. Appl. Mech. 65 (1965) [Google Scholar]
  22. R.A. Schapery, Correspondence Principles and a generalized J Integral for large deformation fracture analysis of viscoelastic media, Int. J. Fracture 25 (1984) 195–223 [CrossRef] [Google Scholar]
  23. F. Sidoroff, Variables internes en visco-elasticité, variables internes scalaires et tensorielles, J. Mécanique 14 (1975) 545–566 [Google Scholar]
  24. L. Onsager, Reciprocal relations in irreversible processes, Phys. Rev. (I) 37 (1931) 405–426 [Google Scholar]
  25. L. Onsager, Reciprocal relations in irreversible processes, II. Phys Rev (II) 38 (1931) 2265–2279 [Google Scholar]
  26. M. Lévesque, Modélisation du comportement mécanique des matériaux composites viscoélastiques non linéaires par une approche d'homogénéisation, Thèse de doctorat, ENSAM Paris, Décembre 2004 [Google Scholar]
  27. W.G. Knauss, I.J. Emri, Non-linear viscoelasticity based on free volume consideration, Computers & Structures 13 (1981) 123–128 [Google Scholar]
  28. W.G. Knauss, I.J. Emri, Volume change and the nonlinearly thermo-viscoelastic constitution of polymers, Poly. Eng. Sci., A. Yee (ed.) 27 (1987) 86–100 [Google Scholar]
  29. A.K. Doolittle, Studies on Newtonian flow II; The dependence of the viscosity of liquid on free space, J. Appl. Phys. 22 (1950) 1471–1475 [Google Scholar]
  30. S.P. Zaoutsos, G.C. Papanicoaou, Study of the effect of fibre orientation on the non-linear viscoelastic behaviour of continuous fibre polymer composites. Recent developments in durability analysis of composite systems, Cardon, Fukuda, Reifsnider & Verchery (ed.), 2000, Belkema, Rotterdam, pp. 375–379 [Google Scholar]
  31. H.J. Golden, An approach to characterize nonlinear viscoelastic material behaviour using dynamic mechanical tests and analyses, J. Appl. Mech. 66 (1999) 872–878 [CrossRef] [Google Scholar]
  32. T.W. Straganac, H.J. Golden, Prediction of nonlinear viscoelastic behaviour using hybrid approach, Int. J. Solid Structures 33 (1996) 4651–4570 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.