Open Access
Issue
Mécanique & Industries
Volume 9, Number 6, Novembre-Décembre 2008
Page(s) 579 - 588
DOI https://doi.org/10.1051/meca/2009022
Published online 16 May 2009
  1. D. Gottlieb, S. Gottlieb, Spectral methods for discontinuous problems, Biennial Numerical Analysis Conference, NA03 2003, pp. 65–71 http://www.maths.dundee.ac.uk/ naconf/proc03/gottlieb.pdf [Google Scholar]
  2. Y.Y. Kim, J.H. Kang, Inability of free-interface modes in representing stress resultants near the free interface, J. Ib. Acoustics 122 (2000) 409–411 [CrossRef] [Google Scholar]
  3. Z.–Q. Qu, Hybrid expansion method for frequency responses and their sensitivities, Part I: undamped systems, J. Sound Vib. 231 (2000) 175–193 [CrossRef] [Google Scholar]
  4. M. Tournour, N. Atalla, Pseudostatic corrections for the forced vibroacoustic response of a structure-cavity system, J. Acoustical Soc. Amer. 107 (2000) 2379–2386 [CrossRef] [Google Scholar]
  5. M. Tournour, N. Atalla, O. Chiello, F. Sgard, Validation, performance, convergence and application of free interface component mode synthesis, Computer & Structures 79 (2001) 1861–1876 [CrossRef] [Google Scholar]
  6. E. Balmès, Optimal Ritz vectors for component mode synthesis using the singular value decomposition, AIAA J. 34 (1996) 1256–1260 [CrossRef] [Google Scholar]
  7. O. Sauvage, Modélisation du comportement vibratoire d'un groupe moto-propulseur de 0 à 10 000 Hz, Thèse de doctorat de l'École Centrale de Paris, 2002 (in french) [Google Scholar]
  8. J.-M. Lagache, S. Assaf, C. Schulte, Finite element synthesis of structural or acoustic receptances in view of practical applications, J. Sound Vib. 310 (2008) 313–351 [CrossRef] [Google Scholar]
  9. J.N. Reddy, Applied functional analysis and variational methods in engineering, McGraw-Hill, New York, 1986, pp. 229–231 [Google Scholar]
  10. G. Strang, Introduction to Applied Mathematics, Welleslay, Cambridge Press, 1986 [Google Scholar]
  11. O. Tanneau, O. Sauvage, J.M. Lagache, Analyse vibratoire de modifications de structures. L'approche des cercles de Vincent revisitée, XVe Colloque Vibrations, Chocs et Bruits, École Centrale de Lyon, 14–16 juin 2006 (in french) [Google Scholar]
  12. M.G. Tehrani, W. Wang, C. Mares, J.E. Mottershead, The generalized Vincent circle in vibration suppression, J. Sound Vib. 292 (2006) 661–675 [CrossRef] [Google Scholar]
  13. M.G. Tehrani, W. Wang, C. Mares, J.E. Mottershead, Vibration Suppression Using Vincent's Circle, Proceeding of ISMA, 2004, pp. 603–661 [Google Scholar]
  14. J.E. Mottershead, Structural modification for the assignment of zeros using measured receptances, Transactions of the American Society of Mechanical Engineers, J. Appl. Mech. 68 (2001) 791–798 [CrossRef] [Google Scholar]
  15. A.H. Vincent, A note on the properties of the variation of structural response with respect to a single structural parameter when plotted in the complex plane, Westland Helicopters Ltd., Report GEN/DYN/RES/010R, September 1973 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.