Open Access
Issue
Mécanique & Industries
Volume 11, Number 2, Mars-Avril 2010
Page(s) 93 - 103
DOI https://doi.org/10.1051/meca/2010021
Published online 15 September 2010
  1. G. Petropoulos, C. Pandazaras, Evaluating the real profile length in turning of carbon steels, Ind. Lubr. Tribol. 55 (2003) 128–136 [CrossRef] [Google Scholar]
  2. N. Bhatnagar, N. Ramakrishnan, N.K. Naik, On the machining of fiber reinforced plastics (FRP) composite laminates, Int. J. Mach. Tool. Manuf. 35 (1995) 701–716 [CrossRef] [Google Scholar]
  3. H. Voss, K. Friedrich, On the wear behaviour of short-fibre-reinforced PEEK composites, Wear 116 (1987) 1–18 [CrossRef] [Google Scholar]
  4. R. Krishnamurthy, G. Santhanakrishnan, S.K. Malhotra, Machining of Polymeric composites, Proceedings of the Machining of Composite Materials Symposium, ASM Materials Week (1992) 139–148 [Google Scholar]
  5. M. Rahman, S. Ramakrishna, J.R.S. Prakash, D.C.G. Tan, Machinability study of carbon fiber reinforced composite, J. Mat. Proc. Technol. 89–99 (1999-a) 292–297 [CrossRef] [Google Scholar]
  6. M. Rahman, S. Ramakrisna, H.C. Thoo, Machinability study of carbon/PEEK composites, Machin. Science Technology 3 (1999-b) 49–59 [CrossRef] [Google Scholar]
  7. R. Komanduri, Machining fiber-reinforced composites, Mech. Eng. 115 (1993) 58–64 [Google Scholar]
  8. Z. Lu, T. Yoneyama, Micro cutting in the micro lathe turning system, Int. J. Mach. Tool. Manuf. 339 (1999) 1171–1183 [CrossRef] [Google Scholar]
  9. Y.N. Picard, D.P. Adams, M.J. Vasile, M.B. Ritchey, Focused ion beam-shaped microtools for ultra-precision machining of cylindrical components, Precision Engineering 27 (2003) 59–69 [CrossRef] [Google Scholar]
  10. A. Spencer, Deformations of fiber-reinforced materials, Clarendon Press, Oxford, 1972 [Google Scholar]
  11. D. Arola, M. Ramulu, Orthogonal cutting of fiber-reinforced composites: A finite element analysis, Int. J. Mech. Sci. 39 (1997) 597–613 [CrossRef] [Google Scholar]
  12. G. Caprino, V. Tagliaferri, Damage development in drilling glass-fiber-reinforced plastics, Int. J. Mach. Tool. Manuf. 35 (1995) 817–829 [CrossRef] [Google Scholar]
  13. G. Caprino, L. Santo, L. Nele, Interpretation of size effect in orthogonal machining of composite materials. Part I: Unidirectional glass-fiber-reinforced plastics, Composites part A – Applied Science and Manufacturing 29 (1998) 887–892 [CrossRef] [Google Scholar]
  14. J. Mathew, N. Ramakrishnan, N.K. Naik, Investigations into the effect of geometry of a trepanning tool on thrust and torque during drilling of GFRP composites, J. Mat. Proc. Tech. 91 (1999-a) 1–11 [CrossRef] [Google Scholar]
  15. J. Mathew, N. Ramakrishnan, N.K. Naik, Trepanning on unidirectional composites: delamination studies, Composites Part A: Applied Science and Manufacturing (Incorporating Composites and Composites Manufacturing) 30 (1999-b) 951–959 [CrossRef] [Google Scholar]
  16. M.P. Groover, Fundamentals of Modern Manufacturing Materials, Process and Systems, Prentice Hall International Editions, 1996 [Google Scholar]
  17. S.O. An, E.S. Lee, S.L. Noh, A study on the cutting characteristics of glass fiber reinforced plastics with respect to tool materials and geometries, J. Mat. Proc. Technol. 68 (1997) 60–67 [CrossRef] [Google Scholar]
  18. J.R. Ferreira, N.L. Coppini, F. Levy Neto, Characteristics of carbon-carbon composite turning, J. Mat. Proc. Technol. 109 (2001) 65–71 [CrossRef] [Google Scholar]
  19. H. Hocheng, C.C. Tsao, The path towards delamination-free drilling of composite materials, J. Mat. Proc. Technol. 167 (2005) 251–264 [Google Scholar]
  20. H. Hocheng, C.C. Tsao, Effects of special drill bits on drilling-induced delamination of composite materials, Int. J. Mach. Tool. Manuf. 46 (2006) 1403–1416 [CrossRef] [Google Scholar]
  21. A. Koplev, A. Lystrup, T. Vorm, The cuttin. process, chips and cutting forces in machining CFRP, Composites 14 (1983) 371–376 [CrossRef] [Google Scholar]
  22. C.S. Chang, Turning of glass-fiber reinforced plastics materials with chamfered main cutting edge carbide tools, J. Mat. Proc. Technol. 180 (2006) 117–129 [CrossRef] [Google Scholar]
  23. G.C. Everstine, T.G. Rogers, A Theory of Machining of Reinforced Materials, J. Composi. Mater. 5 (1971) 94–106 [CrossRef] [Google Scholar]
  24. A. Koplev, Cutting of CFRP with single edge tools, 3rd International Conference on composite Materials, Paris, 1980 [Google Scholar]
  25. K. Sakuma, M. Seto, Tool wear in cutting glass-fiber-reinforced plastics. The relation between fiber orientation and tool wear, Bull. JSME 26 (1983) 1420–1427 [Google Scholar]
  26. H. Takeyama, N. Iijima, Machinability of glass fiber reinforced plastics and applications of ultrasonic machining, Annals CIRP 37 (1988) 93–96 [CrossRef] [Google Scholar]
  27. M. Ramesh, K. Seetharamu, N. Ganesan, M. Sivakumar, Analysis of machining of FRPs using FEM, Int. J. Mach. Tool. Manuf. 38 (1998) 1531–1549 [CrossRef] [Google Scholar]
  28. M.V. Ribeiro, N.L. Coppini, An applied database system for the optimisation of cutting conditions and tool selection, J. Mat. Proc. Technol. 92–93 (1999) 371–374 [CrossRef] [Google Scholar]
  29. M. Mahdi, L. Zhang, An adaptive three-dimensional finite element algorithm for the orthogonal cutting of composite materials, J. Mat. Proc. Technol. 113 (2001-a) 368–372 [CrossRef] [Google Scholar]
  30. M. Mahdi, L. Zhang, A finite element model for the orthogonal cutting of fiber-reinforced composite materials, J. Mat. Proc. Technol. 113 (2001-b) 373–377 [CrossRef] [Google Scholar]
  31. X.M. Wang, L.C. Zhang, Orthogonal cutting mechanisms of graphite/epoxy composite. Part I: unidirectional laminate, Int. J. Mach. Tool. Manuf. 35 (1995-a) 1623–1638 [CrossRef] [Google Scholar]
  32. X.M. Wang, L.C. Zhang, Orthogonal cutting mechanisms of graphite/epoxy composite. Part II: multi-directional laminate, Int. J. Mach. Tool. Manuf. 35 (1995-b) 1639–1648 [CrossRef] [Google Scholar]
  33. T. Kaneeda, CFRP cutting mechanism, Trans. Amer. Manufacturing Res. Inst. SME 19 (1991) 216–221 [Google Scholar]
  34. G. Byrne, U.E. Wunsch, Composite materials in manufacturing engineering, Technical development and applications, NBST (1986) [Google Scholar]
  35. M. Ramulu, D. Kim, G. Choi, Frequency analysis and characterization in orthogonal cutting of glass fiber reinforced composites, Composites Part A: Applied Science and Manufacturing (Incorporating Composites and Composites Manufacturing) 183 (2003) 949–962 [CrossRef] [Google Scholar]
  36. M. Ramulu, S.-Y. Kuo, Y.-M. Chen, D. Kim, R. Spitsen, Cutting characteristics of preform and SMC composites, Transactions of the North American Manufacturing Research Institute of SME 32 (2004) 239–246 [Google Scholar]
  37. U.A. El-Sonbaty, T. Khashaba, T. Machaly, Factors affecting the machinability of GFR/epoxy composites, Compos. Struct. 63 (2004) 329–338 [CrossRef] [Google Scholar]
  38. J.R. Ferreira, N.L. Coppini, G.W.A. Miranda, Machining optimisation in carbon fiber reinforced composite materials, J. Mat. Proc. Technol. 92 (1999) 135–140 [CrossRef] [Google Scholar]
  39. W.H. Yang, Y.S. Tarng, Design optimization of cutting parameters for turning operations based on the Taguchi Method, J. Mat. Proc. Technol. 84 (1998) 122–129 [CrossRef] [Google Scholar]
  40. R. Varatharajan, S.K. Malhotra, L. Vijayaraghavan, R. Krishnamurthy, Mechanical and machining characteristics of GF/PP and GF/Polyester composites, Materials Science and Engineering B 132 (2006) 134–137 [CrossRef] [Google Scholar]
  41. E. Eriksen, Influence from production parameters on the surface roughness of a machined short fibre reinforced thermoplastic, Int. J. Mach. Tool. Manuf. 39 (1999) 1661–1618 [CrossRef] [Google Scholar]
  42. B.Y. Lee, Y.S. Tarng, H.R. Lii, An Investigation of Modelling of the Machining Database in Turning Operations, J. Mat. Proc. Technol. 105 (2000) 1–6 [CrossRef] [Google Scholar]
  43. P.S. Sreejith, R. Krishnamurthy, S.K. Malhota, K. Narayanasamy, Evaluation of PCD tool performance during machining of carbon/phenolic ablative composites, J. Mat. Proc. Technol. 104 (2000) 53–58 [CrossRef] [Google Scholar]
  44. R.Q. Sardinas, P. Reis, J.P. Davim, Multi-objective optimization of cutting parameters for drilling laminate composite materials by using genetic algorithms, Composites Science and Technology 66 (2006) 3083–3088 [CrossRef] [Google Scholar]
  45. A. Sang-Olk, L. Eun-Sang, N. Sang-Lay, A study on the cutting characteristics of glass fiber reinforced plastics with respect to tool materials and geometries, J. Mat. Proc. Technol. 68 (1997) 60–67 [CrossRef] [Google Scholar]
  46. P.G. Bernardos, C.G. Vosniakos, Predicting surface roughness in machining: a review, Int. J. Mach. Tool. Manuf. 43 (2003) 833–844 [CrossRef] [Google Scholar]
  47. I. Reineck, M.E. Sjöstrand, J. Karner, M.. Pedrazzini, Diamond coated cutting tools, Int. J. Refractory Metals and Hard Materials (1996) 187–193 [CrossRef] [Google Scholar]
  48. Q.S. Bai, Y.X. Tao, P. Bex, G. Zhang, Study on wear mechanisms and grain effects of PCD tool in machining laminated flooring, Int. J. Refractory Metals and Hard Materials 22 (2004) 111–115 [CrossRef] [Google Scholar]
  49. A. Chambers, G. Bishop, The drilling of carbon fibre polymer matrix composites, Processing and Manufacturing 3 (1995) 565–572 [Google Scholar]
  50. S. Jahanmir, M. Ramulu, P. Koshy, Machining of ceramics and composites, Marcel Dekker Inc., 1998, pp. 238–243 [Google Scholar]
  51. C. Faure, W. Hänni, C.J. Schmutz, M. Gervanoni, Diamond-coated tools, Diam. Rel. Mat. 8 (1999) 830–833 [CrossRef] [Google Scholar]
  52. J.Y. Sheikh-Ahmad, J.S. Stewart, H. Feld, Failure characteristics of diamond-coated carbides in machining wood-based composites, Wear 255 (2003) 1433–1437 [CrossRef] [Google Scholar]
  53. M. Belmonte, F.J. Oliveira, M.A. Lanna, C.M. Silva, E.J. Corat, R.F. Silva, Turning of CFRC composites using Si3N4 and thin CVD diamond coated Si3N4 tools, Materials Science Forum 455-456 (2004) 609–613 [CrossRef] [Google Scholar]
  54. R.H. Olsen, R.C. Dewes, D.K. Aspinwall, Machining of electrically conductive CVD diamond tool blanks using EDM, J. Mat. Proc. Technol. 149 (2004) 627–632 [CrossRef] [Google Scholar]
  55. R.S. Sussmann, J.R. Brandon, S.E. Coe, C.S.J. Pickles, C.G. Sweeney, A. Wasenczuk, C.J.H. Wort, C.N. Dodge, CVD diamond: new engineering material for thermal, dielectric and optical applications, Ind. Diamond Rev. 3 (1998) 69–77 [Google Scholar]
  56. S. Kalpakjian, S.R. Schmid, Manufactura, ingeniería y tecnología, Pearson Educación, México, 2002 [Google Scholar]
  57. Y. Kevin Chou, J. Lui, CVD diamond tool performance in metal matrix composite machining, Surf. Coat. Technol. 200 (2005) 1872–1878 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  58. A. Köpf, S. Feistritzer, K. Udier, Diamond coated cutting tools for machining of non-ferrous metals and fibre reinforced polymers, Int. J. Ref. Met. Hard Mater. 24 (2006) 354–359 [CrossRef] [Google Scholar]
  59. J.P. Davim, Diamond tool performance in machining metal-matrix composites, J. Mat. Proc. Technol. 128 (2002) 100–105 [CrossRef] [Google Scholar]
  60. S. Turchetta, L. Carrino, W. Polini, CVD diamond insert in stone cutting, Diam. Rel. Mat. 14 (2005) 641–645 [CrossRef] [Google Scholar]
  61. P.U. Arumugam, A.P. Malshe, S.A. Batzer, Dry machining of aluminium silicon alloy using polished CVD diamond-coated cutting tools inserts, Surf. Coat. Technol. 200 (2006) 3399–3403 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  62. H. Fukui, J. Okida, N. Omori, H. Moriguchi, K. Tsuda, Cutting performance of DLC coated tools in dry machining aluminium alloys, Surf. Coat. Technol. 187 (2004) 70–76 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  63. G. Cabral, P. Reis, R. Polini, E. Titus, N. Ali, J.P. Davim, J. Grácio, Cutting performance of time-modulated chemical vapour deposited diamond coated tool inserts during machining graphite, Diam. Rel. Mat. (2006) 1753–1758 [CrossRef] [Google Scholar]
  64. P.S. Sreejith, R. Krishnamurthy, S.K. Malhotra, Effect of specific cutting pressure and temperature during machining of carbon/phenolic ablative composite using PCBN, J. Mat. Proc. Technol. 183 (2007) 88–95 [CrossRef] [Google Scholar]
  65. H.V. Ravindra, Y.G. Srinivasa, R. Krishnamurthy, Tool wear monitoring in turning using a pattern-recognition technique, J. Mat. Proc. Technol. 37 (1993-a) 731–740 [CrossRef] [Google Scholar]
  66. H.V. Ravindra, Y.G. Srinivasa, R. Krishnamurthy, Modeling of tool wear based on cutting forces in turning, Wear 169 (1993-b) 25–32 [CrossRef] [Google Scholar]
  67. M.E.R. Bonifacio, A.E. Diniz, Correlating tool wear tool life, surface roughness and tool vibration in finish turning with coated carbide tools, Wear 173 (1994) 137–144 [CrossRef] [Google Scholar]
  68. S. Dolinsek, J. Kopac, Acoustic emission signals for tool wear identification, Wear 225 (1999) 295–303 [CrossRef] [Google Scholar]
  69. G. Spur, U.E. Wunsch, Turning of Fiber-Reinforced Plastics, Manuf. Rev. 1 (1988) 124–129 [Google Scholar]
  70. K. Palanikumar, L. Karunamoorthy, R. Karthikeyan, Optimizing the machining parameters for minimum surface roughness in turning of GFRP composites using design of experiments, J. Mat. Sci. Technol. 20 (2004) 373–378 [Google Scholar]
  71. K. Palanikumar, Cutting parameters optimization for surface roughness in machining of GFRP composites using Taguchi’s method, J. Reinf. Plast. Compos. 25 (2006) 1739–1751 [CrossRef] [Google Scholar]
  72. O.B. Abouelatta, J. Mádl, Surface roughness prediction based on cutting parameters and tool vibrations in turning operations, J. Mat. Proc. Technol. 118 (2001) 269-277 [CrossRef] [Google Scholar]
  73. G. Petropoulos, J.P. Davim, F. Mata, C. Pandazaras, New considerations of evaluating the anisotropy of machined surfaces, J. Balkan Tribological Association 12 (2006-a) 1–6 [Google Scholar]
  74. M. Ramulu, C.W. Wern, J.L. Garbini, Effect of the direction on surface roughness measurements of machined graphite/epoxy composite, Compos. Manuf. 4 (1993) 39–51 [CrossRef] [Google Scholar]
  75. A.A. Cenna, P. Mathew, Evaluation of cut quality of fibre-reinforced plastics, Int. J. Mach. Tool. Manuf. (1997) 723–736 [CrossRef] [Google Scholar]
  76. G. Santhanakrishman, R. Krishnamurthy, S.K. Malhota, Machinability Characteristics of Fiber Reinforced Plastics Composites, J. Mech. Work. Technol. (1988) 195–204 [CrossRef] [Google Scholar]
  77. M. Ramulu, D. Arola, K. Colligan, Preliminary Investigation of Effects on the Surface Integrity of Fiber Reinforced Plastics, PD-VOL-64-2, Engineering Systems Design and Analysis 2 ASME (1994) 93–101 [Google Scholar]
  78. J. Kopac, M. Bahor, Interaction of the technological history of a workpiece material and the machining parameters on the desired quality of the surface roughness of a product, J. Mat. Proc. Technol. 92–93 (1999) 381–387 [CrossRef] [Google Scholar]
  79. X.M. Wang, L.C. Zhang, An experimental investigation into the orthogonal cutting of unidirectional fiber reinforced plastics, Int. J. Mach. Tool. Manuf. 43 (2003) 1015–1022 [CrossRef] [Google Scholar]
  80. J.P. Davim, P. Reis, Dimensional precision and surface roughness on turning tubes in fibre reinforced plastics based on the design experiments, Int. J. Mat. Prod. Technol. 20 (2004-a) 268–279 [CrossRef] [Google Scholar]
  81. G.P. Petropoulos, C.N. Pandazaras, N.M. Vaxevanidis, A. Antoniadis, Multi-parameter identification and control of turned surface textures, Int. J. Adv. Manuf. Technol. 29 (2006-b) 118–128 [CrossRef] [Google Scholar]
  82. K.A. Risbood, U.S. Dixit, A.D. Sahasrabudhe, Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process, J. Mat. Proc. Technol. 132 (2003) 203–214 [CrossRef] [Google Scholar]
  83. M. Brezocnik, M. Kovacic, M. Ficko, Prediction of surface roughness with genetic programming, J. Mat. Proc. Technol. 157 (2004) 28–34 [CrossRef] [Google Scholar]
  84. P.J. Núñez, J. Simao, J.M. Arenas, C. De la Cruz Surface roughness characterization using cutting force analysis, regression and neural network prediction models, Mat. Sci. Forum 526 (2006) 211–216 [CrossRef] [Google Scholar]
  85. K. Palanikumar, L. Karunamoorthy, R. Karthikeyan, Parametric optimization to minimise the surface roughness on the machining of GFRP composites, J. Mat. Sci. Techn. 22 (2006-a) 66–72 [Google Scholar]
  86. K. Palanikumar, L. Karunamoorthy, R. Karthikeyan, Optimization of machining parameters in turning GFRP composites using a carbide (K10) tool based on the Taguchi method with fuzzy logics, Met. Mater. Int. 12 (2006-d) 483–491 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.